首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Fucan-coated magnetite (Fe3O4) nanoparticles were synthesized by the co-precipitation method and studied by Mössbauer spectroscopy and magnetic measurements. The sizes of the nanoparticles were 8–9 nm. Magnetization measurements and Mössbauer spectroscopy at 300 K revealed superparamagnetic behavior. The magnetic moment of the Fe3O4 is partly screened by the Fucan coating aggregation. When the magnetite nanoparticles are capped with oleic acid or fucan, reduced particle-particle interaction is observed by Mössbauer and TEM studies. The antitumoral activity of the fucan-coated nanoparticles were tested in Sarcoma 180, showing an effective reduction of the tumor size.  相似文献   

2.
Collective magnetic behavior of CoFe2O4 nanoparticles with diameters of 76, 16, 15 and 8 nm, respectively, prepared by different chemical methods has been investigated. Particle composition, size and structure have been characterized by inductive coupled plasma (ICP), transmission electron microscopy (TEM) and powder X-ray diffraction (PXRD). Basic magnetic properties have been determined from the temperature dependence of magnetization and magnetization isotherms measurements. The three samples exhibit characteristic of a superparamagnetic system with the presence of strong interparticle interactions. Magnetic relaxation phenomena have been examined via frequency-dependent ac susceptibility measurements and aging and memory effect experiments. For the particles coated with oleic acid, it has been demonstrated that the sample reveals all attributes of a super-spin glass (SSG) system with strong interparticle interactions.  相似文献   

3.
By using oil in water micelles, cobalt ferrite particles having an average diameter around 3 nm were synthetised. These nanoparticles are characterized by the presence of cation vacancies and no Fe(II) is observed, as it has been described in literature previously. Chemical interfacial treatment allows to coat the particles with citrate derivatives. The magnetic properties of uncoated and coated particles strongly diluted in a polymer substrate are compared by magnetization measurements and 57Fe M?ssbauer spectroscopy. The anisotropy constant is shown to be independent of coating, whereas the magnetization is found to be larger in the uncoated particles. Received 3 February 1998  相似文献   

4.
Single-phase uniform-sized (~9 nm) cobalt ferrite (CFO) nanoparticles have been synthesized by hydrothermal synthesis using oleic acid as a surfactant. The as-synthesized oleic acid-coated CFO (OA-CFO) nanoparticles were well dispersible in nonpolar solvents but not dispersible in water. The OA-CFO nanoparticles have been successfully transformed to highly water-dispersible citric acid-coated CFO (CA-CFO) nanoparticles using a novel single-step ligand exchange process by mechanochemical milling, in which small chain citric acid molecules replace the original large chain oleic acid molecules available on CFO nanoparticles. The OA-CFO nanoparticle’s hexane solution and CA-CFO nanoparticle’s water solution remain stable even after 6 months and show no agglomeration and their dispersion stability was confirmed by zeta-potential measurements. The contact angle measurement shows that OA-CFO nanoparticles are hydrophobic whereas CA-CFO nanoparticles are superhydrophilic in nature. The potentiality of as-synthesized OA-CFO and mechanochemically transformed CA-CFO nanoparticles for the demulsification of highly stabilized water-in-oil and oil-in-water emulsions has been demonstrated.  相似文献   

5.
Bisphosphonates BP molecules have shown to be efficient for coating superparamagnetic iron oxide particles. In order to clarify the respective roles of electrical charge and the length of the molecules, bisphosphonates with one or two ammonium moieties with an intermediate aliphatic group of 3, 5 or 7 carbons were synthesized and iron oxide nanoparticles coated. The evaluation on their iron core properties was made by transmission electron microscopy (TEM), nuclear magnetic relaxation dispersion (NMRD) profiles and Mössbauer spectra. The core size is close to 5 nm, with a global superparamagnetic behaviour modified by a paramagnetic Fe-based layer, probably due to surface crystal alteration. The hydrodynamic sizes increase slightly with aliphatic chain length (from 9.8 to 18.6 nm). The presence of one or two ammonium group(s) lowers the negative electrophoretic mobility up to bear zero values but reduces their colloidal stability. These BP-coated iron oxide nanoparticles are promising Magnetic Resonance Imaging (MRI) contrast agents.  相似文献   

6.
In this study, the influence of surface coating on the magnetic and heat dissipation properties of Fe3O4 nanoparticles was investigated. Fe3O4 nanoparticles that ranged in size between (particle sizes of 20 and 30 nm) were coated with polyethylenimine (PEI), oleic acid, and Pluronic F-127. Surface coatings that were composed of thick layers of oleic acid and Pluronic F-127 reduced dipole interactions between the particles, and resulted in reduced coercivity and decreased Néel relaxation times. The ac magnetization measurements revealed that the heat dissipation of the PEI-coated Fe3O4 nanoparticles was induced by hysteresis loss and Brownian relaxation loss and that of the oleic-acid-coated Fe3O4 nanoparticles was mainly induced by hysteresis loss and Néel relaxation loss.  相似文献   

7.
Monodisperse iron oxide nanoparticles (NPs) of 4 nm were obtained through high-temperature solution phase reaction of iron (III) acetylacetonate with 1, 2-hexadecanediol in the presence of oleic acid and oleylamine. The as-synthesized iron oxide nanoparticles have been characterized by X-ray diffraction, transmission electron microscopy, Mössbauer spectroscopy and magnetic measurements. The species obtained were Fe3O4 and/or $\upgamma$ -Fe2O3. These NPs are superparamagnetic at room temperature and even though the reduced particle size they show a high saturation magnetization (MS ≈ 90 emu/g).  相似文献   

8.
Magnetite nanoparticles, which are coated with oleic acid in a hexane solution and exhibit an average diameter of 7.7 nm, were embedded in a porous silicon (PS) matrix by immersion under defined parameters (e.g. concentration, temperature, time). The porous silicon matrix is prepared by anodization of a highly n-doped silicon wafer in an aqueous HF-solution. Magnetic characterization of the samples has been performed by SQUID-magnetometry. The superparamagnetic behaviour of the magnetite nanoparticles is represented by temperature-dependent magnetization measurements. Zero field (ZFC)/field cooled (FC) experiments indicate magnetic interactions between the particles. For the infiltration into the PS-templates different concentrations of the magnetite nanoparticles are used and magnetization measurements are performed in respect with magnetic interactions between the particles. The achieved porous silicon/magnetite specimens are not only interesting due to their transition between superparamagnetic and ferromagnetic behaviour, and thus for magnetic applications but also because of the non-toxicity of both materials giving the opportunity to employ the system in medical applications as drug delivery or in medical diagnostics.  相似文献   

9.
100 MeV Si+7 irradiation induced modifications in the structural and magnetic properties of Mg0.95Mn0.05Fe2O4 nanoparticles have been studied by using X-ray diffraction, Mössbauer spectroscopy and a SQUID magnetometer. The X-ray diffraction patterns indicate the presence of single-phase cubic spinel structure of the samples. The particle size was estimated from the broadened (311) X-ray diffraction peak using the well-known Scherrer equation. The milling process reduced the average particle size to the nanometer range. After irradiation a slight increase in the particle size was observed. With the room temperature Mössbauer spectroscopy, superparamagnetic relaxation effects were observed in the pristine as well as in the irradiated samples. No appreciable changes were observed in the room temperature Mössbauer spectra after ion irradiation. Mössbauer spectroscopy performed on a 12 h milled pristine sample (6 nm) confirmed the transition to a magnetically ordered state for temperatures less than 140 K. All the samples showed well-defined magnetic ordering at 5 K, whereas, at room temperature they were in a superparamagnetic state. From the magnetization studies performed on the irradiated samples, it was concluded that the saturation magnetization was enhanced. This was explained on the basis of SHI irradiation induced modifications in surface states of the nanoparticles.  相似文献   

10.
Iron oxide nanoparticles made from the thermal decomposition method are highly uniform in all respects (size, shape, composition and crystallography), making them ideal candidates for many bioapplications. The surfactant coating on the as-synthesized nanoparticles renders the nanoparticles insoluble in aqueous solutions. For biological applications nanoparticles must be water soluble. Here we demonstrate the phase transfer of our nanoparticles with the biocompatible copolymer Pluronic F127. Transmission electron microscopy, Fourier transform infrared spectroscopy and dynamic light scattering indicate that the nanoparticles are coated discretely. Magnetic measurements show that the nanoparticles remain superparamagnetic with saturation magnetization ∼96% of the maximum theoretical value.  相似文献   

11.
Nearly monodisperse, well crystalline, superparamagnetic CoFe2O4 nanoparticles with diameter of 6 nm were synthesized in oleic acid–water–pentanol system at 180 °C. Hydrothermal procedure, as an efficient and environment friendly alternative to organic decomposition methods, was investigated by variation of reaction conditions, and the particle formation mechanism was finally proposed (i.e., hydrolysis of metal oleates in organic phase, with size of the particles (5–8 nm) controlled by polarity-driven precipitation into water phase). As-prepared particles were hydrophobic due to coating by oleic acid. Further modification with dimercaptosuccinic acid led to water-dispersible particles with hydrodynamic diameter of 20 nm. Prepared particles were investigated by TEM, XRD, ICP-AES, light scattering, SQUID magnetometry, and Mössbauer spectroscopy.  相似文献   

12.
Cobalt ferrite, CoFe2O4, nanoparticles in the size range 2–15 nm have been prepared using a non-aqueous solvothermal method. The magnetic studies indicate a superparamagnetic behavior, showing an increase in the blocking temperatures (ranging from 215 to more than 340 K) with the particle size, D TEM. Fitting M versus H isotherms to the saturation approach law, the anisotropy constant, K, and the saturation magnetization, M S, are obtained. For all the samples, it is observed that decreasing the temperature gives rise to an increase in both magnetic properties. These increases are enhanced at low temperatures (below ~160 K) and they are related to surface effects (disordered magnetic moments at the surface). The fit of the saturation magnetization to the T 2 law gives larger values of the Bloch constant than expected for the bulk, increasing with decreasing the particle size (larger specific surface area). The saturation magnetization shows a linear dependence with the reciprocal particle size, 1/D TEM, and a thickness of 3.7 to 5.1 Å was obtained for the non-magnetic or disordered layer at the surface using the dead layer theory. The hysteresis loops show a complex behavior at low temperatures (T ≤ 160 K), observing a large hysteresis at magnetic fields H > ~1000 Oe compared to smaller ones (H ≤ ~1000 Oe). From the temperature dependence of the ac magnetic susceptibility, it can be concluded that the nanoparticles are in magnetic interaction with large values of the interaction parameter T 0, as deduced by assuming a Vogel–Fulcher dependence of the superparamagnetic relaxation time. Another evidence of the presence of magnetic interactions is the almost nearly constant value below certain temperatures, lower than the blocking temperature T b, observed in the FC magnetization curves.  相似文献   

13.
We report on the synthesis and characterization of uncoated and gold coated magnetite nanoparticles. Structural characterizations, carried out using X-ray diffraction, confirm the formation of magnetite phase with a mean size of ~7 and ~8 nm for the uncoated and gold covered magnetite nanoparticles, respectively. The value of the gold coated Fe3O4 nanoparticles is consistent with the mean physical size determined from transmission electron microscopy images. Mössbauer spectra at room temperature are consistent with the thermal relaxation of magnetic moments mediated by particle-particle interactions. The 77 K Mössbauer spectra are modeled with four sextets. Those sextets are assigned to the signal of iron ions occupying the tetrahedral and octahedral sites in the core and shell parts of the particle. The room-temperature saturation magnetization value determined for the uncoated Fe3O4 nanoparticles is roughly ~60 emu/g and suggests the occurrence of surface effects such as magnetic disorder or the partial surface oxidation. These surface effects are reduced in the gold-coated Fe3O4 nanoparticles. Zero-field–cooled and field-cooled curves of both samples show irreversibilities which are consistent with a superparamagnetic behavior of interacting nanoparticles.  相似文献   

14.
Magnetic protein microspheres with core-shell structure were prepared through a novel approach based on the sonochemical method and the emulsion solvent evaporation method. The microspheres are composed of the oleic acid and undecylenic acid modified Fe3O4 cores and coated with globular bovine serum albumin (BSA). Under an optimized condition, up to 57.8 wt% of approximately 10 nm superparamagnetic Fe3O4 nanoparticles could be uniformly encapsulated into the BSA microspheres with the diameter of approximately 160 nm and the high saturation magnetization of 38.5 emu/g, besides of the abundant functional groups. The possible formation mechanism of magnetic microspheres was discussed in detail.  相似文献   

15.
In the present work, we have synthesized and characterized magnetic nanoparticles of maghemite γ-Fe2O3 to study their structural and magnetic properties. For the preparation, magnetite precursor, were oxidized by adjusting the pH = 3.5 at about 80 °C in an acid medium, The mean size of the maghemite particles calculated from the X-ray diffractogram was around 5.7 nm. Mössbauer spectroscopy measurements at room temperature show their superparamagnetic behavior. Furhermore, Mössbauer measurements were carried out at 77 K and 4.2 K in order to find the typical hyperfine fields of the maghemite. Magnetite phase was not found. FC and ZFC magnetization curves measured at 500 Oe indicate a blocking temperature of 105.3 K. The magnetization measurements also show almost zero coercivity at RT. TEM images show nanoparticles with diameter smaller than 10 nm, which are in good agreement with the X-ray pattern and the fitting of the magnetization data.  相似文献   

16.
Two groups of ferrite namely zinc ferrite and chromium ferrite were synthesized by citrate precursor route in the size range of 8 to 35 nm. We have studied the structural and magnetic behaviour of these ferrites using X-ray diffraction (XRD), vibrating sample magnetometer (VSM) and Mössbauer spectroscopic techniques. Our studies show that the nanocrystalline ferrites interact with the hand magnet strongly and give large magnetization in the VSM measurement. The maximum magnetization in the samples sensitively depends on the particle size of synthesized ferrites. We observed as large as 28 Am2/kg of magnetization in the zinc ferrite nanoparticles while that in chromium ferrite is around 11 Am2/kg. In spite of the large magnetization in the zinc ferrite nanoparticles we did not observe any hyperfine splitting even down to 12 K of temperature. Similar behaviour is also observed for chromium ferrite down to 16 K.  相似文献   

17.
We have investigated the magnetic behavior of cobalt ferrite nanoparticles with a mean diameter of 7.2 nm. AC susceptibility of colloidal cobalt ferrite nanoparticles was measured as a function of temperature T from 2 to 300 K under zero external DC field for frequencies ranging from f=10 to 10,000 Hz. A prominent peak appears in both χ′ and χ″ as a function of T. The peak temperature T2 of χ″ depends on f following the Vogel–Fulcher law. The particles show superparamagnetic behavior at room temperature, with transition to a blocked state at TBm94 K in ZFC and 119 K in AC susceptibility measurements, respectively, which depends on the applied field. The saturation magnetization and the coercivity measured at 4.2 K are 27.3 emu/g and 14.7 kOe, respectively. The particle size distribution was determined by fitting a magnetization curve obtained at 295 K assuming a log-normal size distribution. The interparticle interactions are found to influence the energy barriers yielding an enhancement of the estimated magnetic anisotropy, K=6×106 erg/cm3. Mössbauer spectra obtained at higher temperatures show a gradual collapse of the magnetic hyperfine splitting typical for superparamagnetic relaxation. At 4.2 K, the Mössbauer spectrum was fitted with two magnetic subspectra with internal fields Hint of 490, 470 and 515 kOe, corresponding to Fe3+ ions in A and B sites.  相似文献   

18.
王丽  李发伸  周庆国 《中国物理》2000,9(9):685-688
Ni1-xZnxFe2O4 (0.0≤x≤1.0) nanoparticles have been prepared by the polyvinyl alcohol (PVA) sol-gel method. The lattice parameter of Ni-Zn ferrite nanoparticles is larger than that of the bulk material. The variation of saturation magnetization (Ms) as a function of x has been studied. The M?ssbauer spectra of the samples at room temperature showed the presence of ultrafine particles, exhibiting superparamagnetic relaxation. At higher annealing temperature, the portion of the ferromagnetic ultrafine particles increased.  相似文献   

19.
The magnetic and magneto-optical properties of ion-synthesized cobalt nanoparticles in the amorphous silicon oxide matrix are investigated as a function of the implantation dose. The analysis of the field dependences of the magnetization and the magneto-optical Faraday and Kerr effects demonstrates that, as the ion implantation dose increases, the superparamagnetic behavior of an ensemble of cobalt nanoparticles at room temperature gives way to a ferromagnetic response with the anisotropy characteristic of a thin magnetic film. The magnetization curves for the superparamagnetic and ferromagnetic ensembles of cobalt nanoparticles are simulated to determine their average sizes and the filling density in the irradiated layer of the silicon dioxide matrix. It is revealed that the spectral dependences of the Faraday and Kerr effects for ion-synthesized cobalt nanoparticles differ substantially from those for continuous cobalt films due to the localized excitations of free electrons in the nanoparticles.  相似文献   

20.
Biomedical applications of magnetic nanoparticles depend critically on their preparation as aqueous colloidal suspensions, or ferrofluids, with long term stability under physiological conditions. Dispersion of the magnetic nanoparticles is generally achieved by the use of protein cages, polysaccharide, polypeptide and charged macromolecular coatings, which minimize interparticle magnetic interactions, particle agglomeration and precipitation. The synthesis and characterization of gummic-acid stabilized maghemite ferrofluids is reported. X-ray diffraction, transmission electron microscope and dynamic light scattering measurements give a γ-Fe2O3 magnetic core diameter of 8 nm and a nanocomposite particle hydrodynamic diameter of 50 nm. Mössbauer and magnetization measurements indicate the presence of isolated, sterically stabilized superparamagnetic nanoparticles resistant to aging, and thus, promising agents for the production of novel magneto-pharmaceuticals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号