首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
The conformational transformation of a 30-residue peptide H(Ala-Gly-Ser-Gly-AIa-Gly)5OH, i.e., (AGSGAG)5, extracted from highly crystalline region of Bombyx mori (B. mori) silk fibroin was described by using the high resolution solid state 13^C NMR, and CD spectroscopies. Based on the conformation-dependent 13^C NMR chemical shifts of the Ala, Gly and Ser residues and the line-shape analysis of the conformation sensitive Ala Cβ resonance, the peptide revealed a strong preference for silk Ⅱ structural form, i,e,, an antiparallel fl-sheet structure (φ= - 140±20°and ψ= 135±20°) in solid state. On the contrary, the CD spectra of this peptide in the two non-native hexafluorinated fibre spinning solvents, hexafluoroisopropanol (HFIP) and hexafluoroacetone (HFA), exhibited the existence of an unusual tightly-folded conformation resembling 310-helix (φ=- 60±20° and ψ=-30±20°), as judged from the R ratio of [θ]222/[θ]203 in HFIP solution, whereas a dynamically averaged unordered structure in HFA, Taken together, the information inclined to hypothesis that the primary structure of the highly crystalline regions of B. mori silk fibroin may be easily accessible to the large conformational changes, which in turn may be critical for facilitating the structural transformation from unprocessed silk fibroin (silk I form) to processed silk fiber (silk Ⅱform).  相似文献   

2.
In the family of polyimide(PI) materials, Upilex-S~? film has been a shining star through the research PI materials due to its appealing merits. Unfortunately, the wholly rigid-rod backbone and easily formed skin-core micromorphology and microvoids of Upilex-S~? type PI lead to the high difficulty in melt-and wet-spinning fabrication. Herein, we propose a facile and scalable method, reaction-spinning, to fabricate the Upilex-S~? type PI fiber, in which the rapid solidification of spinning dope and partial imidization take place simultaneously. Thus, the stability and mechanical strength of as-spun fibers can be improved, and the microvoids in fibers can be greatly reduced in relative to the wet-spun fibers. The resultant Upilex-S~? type PI fiber shows higher tensile strength and modulus than most commercial thermal-oxidative polymeric fibers with an ultrahigh glass transition temperature T_g of 478 °C. Moreover, the WAXS and SAXS results indicate that orthorhombic crystals are formed for Upilex-S~? type PI fiber in the post hot-drawing process. Increasing the hot-drawing temperature results in a continuous crystallization and high orientation of PI chains in amorphous phase and perfects the existing lamellar structure, which make a great contribution to the improved mechanical property.  相似文献   

3.
A novel polyacrylaminothiourea chelating fiber was synthesized simply and rapidly from nitrilon (an acrylonitrile-based synthetic fiber), which was applied to preconcentrate and separate of trace amount of Au(Ⅲ),Pt(Ⅳ),Pd(Ⅳ) and Ir (Ⅳ) ions from solution of samples.The analyzed ions can be quantitatively concentrated by the fiber up to a flow rate of 20.0mL/min at pH2, and can also be desorbed with 15 mL of 4mol/L HCl 3% thiourea from the fiber column with recoveries of 96.5%-100%.The chelating fiber can be reused for ten times,the recoveries of these ions are still over 92%,and hundred to thousand times of excess of Fe(Ⅲ),Al(Ⅲ),Ca(Ⅱ),Mg(Ⅱ),Ni(Ⅱ),Mn(Ⅱ),Cu(Ⅱ),Zn(Ⅱ),and Cd(Ⅱ) cause no interference on the determination of the analyzed ions by inductively-coupled plasma atomic emission spectrometry (ICP-AES).The static saturation adsorption capacities of the fiber for the analytes are in the range of 1.15-2.80mmol/g.The relative standard deviations for the determination of 20.0ng/mL each of Au(Ⅲ),Pt(Ⅳ),Pd(Ⅳ)and Ir(Ⅳ) are in the range of 0.7%-3.0%.The recoveries for test from standard additions to real solution samples are between 96% and 100%.The concentration of each ion in powder sample detected by the method is in good agreement with the certified value.  相似文献   

4.
Polymeric ester thiourea resin (PDTU-I) is a new kind of chelating resin with functional atoms S, N and O, so it is an excellent adsorbent for noble metal ions. In batch testes, the adsorption capacities of PDTU-I for Pt(IV) and Pd(II) increase with the increase of contact time, temperature and initial concentration of metal ions. The adsorption data fit Boyd's diffusion equation of liquid film, Langmuir adsorption isotherm and Freundlich adsorption isotherm. The maximum adsorption capacities calculated by Langmuir equation are 2.54mmol/g for Pt(IV) and 4.88mmol/g for Pd(II). According to FTIR and XPS results, functional groups of PDTU-I coordinate with noble metal ions in the adsorption process.  相似文献   

5.
Silk reinforced silk-fibroin-based composites were prepared by embedding of silk textile into regenerated silk fibroin(RSF)matrix. The breaking stress and breaking strain of the composites were found 37.7 MPa and 71.1% respectively at(95 ± 5)% RH.Morphological analysis was carried out to observe fracture behavior of the samples. The in vitro biodegradation test showed that the composite degraded slowly and lost 70% weight at the end of 168 h. Moreover, compared with RSF pure film, the composite kept strength and toughness much longer time. In conclusion, this composite has the potential for more accurate cytology research and biomedical tests in the future.  相似文献   

6.
邵正中 《高分子科学》2017,35(4):515-523
A simple and facile synthetic methodology for fabricating the regenerated silk fibroin(RSF)-based hydrogel which consisted of the in situ generated magnetic ferriferous oxide(Fe_3O_4) was developed. Using the co-precipitation of Fe~(2+) and Fe~(3+) within the RSF-based hydrogel with 90% RSF and 10% HPMC(hydroxypropyl methyl cellulose), the as-prepared RSF/Fe_3O_4 hydrogel not only showed high strength of saturation magnetization, but also exhibited excellent catalytic activities. For example, with the assistant of 3,3′,5,5′-tetramethylbenzidine(TMB), the RSF/Fe_3O_4 hydrogel could detect H_2O_2 at a concentration as low as 1 × 10~(-6) mol·L~(-1). In addition, the catalytic activities were able to be maintained for a long term under various conditions. These findings suggest that the RSF-based materials can be endowed with interesting properties, and have great potential for the applications in the fields of biotechnology and environmental chemistry.  相似文献   

7.
Positron lifetime measurements have been made in natural polymer-Nistari silk fibers as a function of isochronalannealing temperature in the range of 27℃ to 280℃. The variations in the positron results indicate the structural changesoccurring in the Nistari silk fibers and determine the glass transition temperature as 170℃. Activation energies weremeasured separately for the crystalline and amorphous regions indicating the versatility of the technique. These values areclose to the N--H bond dissociation energy, suggesting N--H bond dissociation as the most probable process occurringduring thermal treatment As an extension of the positron results, the molecular weight of the Nistari silk fibers wasdetermined to be 10.7×10~5 based on free volume, which lies within the range suggested for the silk fibers. There seems to bean indication that cross-linking changes the spiral structure of cotton fibers to network type. However, this needs to be validated by other techniques.  相似文献   

8.
Two kinds of water-soluble metallophthalocyanines, binuclear cobalt phthalocyanine (Co2Pc2) and binuclear ferric phthalocyanine (Fe2Pc2), were synthesized through phenylanhydride-urea route and characterized by elemental analysis and FT-IR spectra. Binuclear metallophthalocyanine derivatives (Mt2Pc2) were immobilized on silk fibers and modified viscose fibers to construct bioactive fibers of mimic enzyme. Mt2Pc2 was used as the active center of bioactive fibers, viscose and silk fibers as the microenvironments. The catalytic oxidation ability of bioactive fibers on the malodors of methanthiol and hydrogen sulfide was investigated at room temperature. The experimental results indicated that the catalytic activity of such bioactive fibers was closely correlative to the types ofbioactive fibers and substrates.  相似文献   

9.
The interaction of lomefloxacin (LMF) with human serum albumin (HSA) in the presence of copper ions in a physiological medium and its thermodynamic characteristics were investigated by multi-spectroscopy. The experimental results showed that both LMF and LMF-Cu^2+ could quench the fluorescence of HSA with a static quenching mechanism, indicating that LMF or LMF-Cu^2+ could react with HSA. The apparent binding constants/numbers of binding sites were estimated as 4.924± 105 Lomol 1/1.473 for LMF-HSA, 8.990± 104 L·mol^-1/1.785 for LMF- Cu^2+-HSA, 1.10± 105 L·mol^-1/1.21 for LMF-Cu^2+ and 7.30± 102 L·mol^-1/0.82 for HSA-Cu^2+, respectively. AH and AS for LMF-HSA system were calculated to be --2.189 kJ·mol^-1 and 61.25 J·mol^-1·K^-1, while those for LMF-Cu^2+-HSA system were -7.401 kJ·mol^-1 and 47.63 J·mol^-1·K^-1 Although the values of AH and AS in these two systems were different, the treads were similar, which indicated that electrostatic interactions in these two systems played a major role. According to Forster theory, the distances were given as 5.006 nm for HSA-LMF and 4.709 nm for HSA-LMF-Cu^2+. Synchronous fluorescence and circular dichroism spectra confirmed further that the conformations of human serum albumin before and after interacting with LMF or LMF-Cu^2+ were different. All the results revealed that copper ions promoted the interaction of lomefloxacin with human serum albumin.  相似文献   

10.
3,3,4,4-Biphenyltetracarboxylic dianhydride/pyromellitic dianhydride/4,4-oxydianiline(BPDA/PMDA/ODA) polyimide copolymer fibers with different draw ratios were prepared from the imidization of polyacrylic acid(PAA) fibers via a dry-jet wet-spinning process.Their morphologies,microcrystal orientations,thermal stabilities,and mechanical properties were investigated via scanning electron microscopy(SEM),wide angle X-ray diffraction(WAXD),thermogravimetric analysis(TGA),and tensile experiments.In order to acquire fibers with better mechanical performance,we aimed at obtaining the optimal draw ratio.Drawing during thermal imidization resulted in a decreased diameter of fiber from 25.8 μm to 16.9 μm corresponding to draw ratio from 1 to 3.5.WAXD results show that the degree of the orientation of the undrawn sample is 64.1%,whereas that of the drawn sample is up to 82%.The as-spun fiber and those with different draw ratios all exhibit high thermal stabilities,i.e.,the temperature at a mass loss of 5% can reach as high as 570 ℃.The tensile strengths and tensile modulus of the fibers increase with the draw ratios,and the maximum tensile strength and modulus are 0.90 and 12.61 GPa,respectively.  相似文献   

11.
Regenerated silk fibroin (RSF)/graphene oxide (GO) nanocomposite has been substantially investigated due to its significant multifunctional potential. Here, in combination of micromorphology, crystalline conformation, dynamic mechanical property characterization, and Fourier self‐deconvolution (FSD) quantitative analysis, we investigated the RSF molecular chains conformation transition induced by GO nanosheet incorporation, and its influence on the structural and mechanical properties of solution casted RSF/GO composite films. The GO nanosheet promoted the silk fibroin molecular chains conformation transition from random coil to β‐sheet structure, and a correlation between β‐sheet structure fraction and GO concentration was revealed. The β‐sheet structure fraction increases further improved the dynamic mechanical property of composite films. Moreover, based on nucleation‐dependent aggregation of silk fibroin molecular chains, a mechanism considering the competition effect between GO concentration and its total surface area was proposed to explain the observed concentration‐dependent conformation transition phenomenon. The study improves our understanding on silk fibroin conformation transition process in RSF/GO composite and would provide a valuable reference for the rational design of bioinspired multifunctional materials with enhanced mechanical properties. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 1506–1515  相似文献   

12.
A protein conformation transition from random coil and/or helical conformation to beta-sheet is known to be central to the process used by silk-spinning spiders and insects to convert concentrated protein solutions to tough insoluble threads. Several factors including pH, metallic ions, shear force, and/or elongational flow can initiate this transition in both spiders and silkworms. Here, we report the use of proton induced X-ray emission (PIXE), inductively coupled plasma mass spectroscopy (ICP-MS) and atomic adsorption spectroscopy (AAS) to investigate the concentrations of six metal elements (Na, K, Mg, Ca, Cu, and Zn) at different stages in the silk secretory pathway in the Bombyx mori silkworm. We also report the use of Raman spectra to monitor the effects of these six metallic ions on the conformation transition of natural silk fibroin dope and concentrated regenerated silk fibroin solution at concentrations similar to the natural dope. The results showed that the metal element contents increased from the posterior part to the anterior part of silk gland with the exception of Ca which decreased significantly in the anterior part. We show that these changes in composition can be correlated with (i) the ability of Mg2+, Cu2+, and Zn2+ to induce the conformation transition of silk fibroin to beta-sheet, (ii) the effect of Ca2+ in forming a stable protein network (gel), and (iii) the ability of Na+ and K+ to break down the protein network.  相似文献   

13.
The structure and properties of the blend of regenerated silk fibroin (RSF) and poly(vinyl alcohol) (PVA) were investigated. The two polymers in the blend are in the state of phase segregation. Infrared (IR) spectra indicate that the RSF in the blend maintains its intrinsic properties, thus, ethanol treatment can transfer silk I structure of RSF to silk II structure. The water absorption property and mechanical property of the blend are improved in comparison with those of RSF. The blend maintains the major merit of RSF, that is, it can immobilize glucose oxidase on the basis of the conformational transition from silk I structure to silk II structure. The properties of the immobilized enzyme are examined. Moreover, the second generation of glucose sensor based on the immobilized enzyme is fabricated and it has a variety of advantages including easy maintenance of enzyme, simplicity of construction, fast response time and high stability.  相似文献   

14.
The tensile properties and fracture surfaces of N‐methylmorpholine‐N‐oxide (NMMO) regenerated silk fibroin fibers produced with a range of draw ratios has been characterized and related to their microstructure with data obtained from Raman spectroscopy and birefringence measurements. The spinning process allows control of two different draw ratios, coagulation, and postspinning, and it has been found that the microstructure and the properties of the fibers can be modified by the proper combination of both draw ratios. NMMO regenerated silk fibroin fibers subjected to postspinning drawing yield tensile properties comparable to other regenerated fibers and strain at breaking comparable to natural Bombyx mori silk fibers. Tensile strength; however, is still significantly lower than that of natural fibers. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2568–2579, 2007  相似文献   

15.
再生蚕丝的制备及其结构和性能初探   总被引:3,自引:0,他引:3  
在制备高浓度高分子量蚕丝素蛋白水溶液的基础上, 采用湿法纺丝技术, 在一定条件下纺制出力学性能优于天然蚕(茧)丝的再生蚕丝纤维, 其断裂强度及断裂伸长率分别达到0.5 GPa和20%. 扫描电镜观察结果显示: 初生纤维具有典型的“皮芯”结构, 而纤维内部则为疏松多孔的网状或蜂窝状结构; 经过一定的后拉伸处理后, 纤维的表面变得光滑, 且内部结构也趋于致密. 固体 13C核磁共振及拉曼光谱分析结果表明, 后拉伸及热湿处理均有利于提高纤维内部β-折叠结构的含量, 分子链的规整度和取向性也随之改善, 从而使再生蚕丝纤维的力学性能得到进一步提高.  相似文献   

16.
We have carried out studies on the rheological properties of regenerated silk fibroin (RSF) solution using video microscopy. The degummed silk from the Bombyx mori silkworm was used to prepare RSF solution by dissolving it in calcium nitrate tetrahydrate‐methanol solvent. Measurements were carried out by tracking the position of an embedded micron‐sized polystyrene bead within the RSF solution through video imaging. The time dependent mean squared displacement (MSD) of the bead in solution and hence the complex shear modulus of this solution was calculated from the bead's position information. We present here the results of rheological measurements of the silk polymer network in solution over a frequency range, whose upper limit is the frame capture rate of our camera at full resolution. By examining the distribution of MSD of beads at different locations within the sample volume, we demonstrate that this probe technique enables us to detect local inhomogeneities at nanometre length scales, not detectable either by a rheometer or from diffusing wave spectroscopy. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2555–2562, 2007  相似文献   

17.
Polylactic acid (PLA) and silk fibroin (SF) have been widely used in biomedical applications because of their excellent biocompatibility and degradability. In this study, PLA and SF were used as raw materials to prepare hollow fibers with a skin-core structure by wet spinning technology. Scanning electron microscopy observations revealed that the structure of hollow fibers became increasingly uniform with increasing silk fibroin mass fraction. Tensile test results showed that with the increase of silk fibroin content, the elastic modulus of hollow fibers decreased and their tensile properties improved. The results of hollow fibers degradation experiments revealed that increasing the content of silk fibroin can effectively shorten the degradation time of hollow fibers. Ultraviolet spectrophotometry was used to measure the absorbance of tetracycline hydrochloride in phosphate buffer saline and calculate its release rate in hollow fibers with different silk fibroin contents, the result is HFs-9 > HFs-7 > HFs-0 > HFs-5 > HFs-3. The PLA/SF controlled drug release system has precise controlled release of the drug, realizes the separation of the drug from the controlled release system, and solves the problem of sudden drug release. In addition, the controlled release system is non-toxic, degradable, and has excellent mechanical properties.  相似文献   

18.
金属离子导致的丝素蛋白的构象转变   总被引:14,自引:0,他引:14  
蚕丝和蜘蛛丝的优异力学性能一直是科学家们关注的课题^[1-3]。近年来,在蚕丝蛋白结构及其构象方面的研究取得了许多进展^[3-5]。在蚕的腺体中丝素蛋白的构象为silk I(主要是无规线团为主,还有少量的β-转角,α螺旋等),而在纤维状的丝中为silk Ⅱ(主要是β折叠)。金属离子在蚕叶丝过程中的作用也一直是一个人们关心的问题。Chen等^[6]在研究丝胶(包附在丝素蛋白表层的另外一种蛋白)时发现,在一定pH条件下,Ni^2 离子通过四配位的螯合作用诱导丝素蛋白β折叠的形成。并且,Viney等^[7]根据电感耦合等离子体(ICP-MS)技术推测Ca^2 的增加能使β折叠的形成加速。  相似文献   

19.
We have shown that protic ionic liquids, pILs, are effective coagulation solvents for the regenerated of silk fibroin, RSF. We show that the choice of pIL has a dramatic effect on the composition of the RSF. Additionally the use of pILs as the coagulator eliminates the need for volatile organic solvents in silk processing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号