共查询到20条相似文献,搜索用时 0 毫秒
1.
Molecular dynamics simulations were used to compute the frequency-dependent dielectric susceptibility of aqueous solutions of alanine and alanine dipeptide. We studied four alanine solutions, ranging in concentration from 0.13-0.55 mol/liter, and two solutions of alanine dipeptide (0.13 and 0.27 mol/liter). In accord with experiment we find a strong dielectric increment for both solutes, whose molecular origin is shown to be the zwitterionic nature of the solutes. The dynamic properties were analyzed based on a dielectric component analysis into solute, a first hydration shell, and all remaining (bulk) waters. The results of this three component decomposition were interpreted directly, as well as by uniting the solute and hydration shell component to a "suprasolute" component. In both approaches three contributions to the frequency-dependent dielectric properties can be discerned. The quantitatively largest and fastest component arises from bulk water [i.e., water not influenced by the solute(s)]. The interaction between waters surrounding the solute(s) (the hydration shell) and bulk water molecules leads to a relaxation process occurring on an intermediate time scale. The slowest relaxation process originates from the solute(s) and the interaction of the solute(s) with the first hydration shell and bulk water. The primary importance of the hydration shell is the exchange of shell and bulk waters; the self-contribution from bound water molecules is comparatively small. While in the alanine solutions the solute-water cross-terms are more important than the solute self-term, the solute contribution is larger in the dipeptide solutions. In the latter systems a much clearer separation of time scales between water and alanine dipeptide related properties is observed. The similarities and differences of the dielectric properties of the amino acid/peptide solutions studied in this work and of solutions of mono- and disaccharides and of the protein ubiquitin are discussed. 相似文献
2.
An integral equation theory which is applicable to inhomogeneous molecular liquids is proposed. The "inhomogeneous reference interaction site model (RISM)" equation derived here is a natural extension of the RISM equation to inhomogeneous systems. This theory makes it possible to calculate the pair correlation function between two molecules which are located at different density regions. We also propose approximations concerning the closure relation and the intramolecular susceptibility of inhomogeneous molecular liquids. As a preliminary application of the theory, the hydration structure around an ion is investigated. Lithium, sodium, and potassium cations are chosen as the solute. Using the Percus trick, the local density of solvent around an ion is expressed in terms of the solute-solvent pair correlation function calculated from the RISM theory. We then analyze the hydration structure around an ion through the triplet correlation function which is defined with the inhomogeneous pair correlation function and the local density of the solvent. The results of the triplet correlation functions for cations indicate that the thermal fluctuation of the hydration shell is closely related to the size of the solute ion. The triplet correlation function from the present theory is also compared with that from the Kirkwood superposition approximation, which substitutes the inhomogeneous pair correlation by the homogeneous one. For the lithium ion, the behavior of the triplet correlation functions from the present theory shows marked differences from the one calculated within the Kirkwood approximation. 相似文献
3.
In this article, we propose a new multigrid-based algorithm for solving integral equations of the reference interactions site model (RISM). We also investigate the relationship between the parameters of the algorithm and the numerical accuracy of the hydration free energy calculations by RISM. For this purpose, we analyzed the performance of the method for several numerical tests with polar and nonpolar compounds. The results of this analysis provide some guidelines for choosing an optimal set of parameters to minimize computational expenses. We compared the performance of the proposed multigrid-based method with the one-grid Picard iteration and nested Picard iteration methods. We show that the proposed method is over 30 times faster than the one-grid iteration method, and in the high accuracy regime, it is almost seven times faster than the nested Picard iteration method. 相似文献
4.
An application of the coupled reference interaction site model (RISM)/simulation methodology to the calculation of the potential of mean force (PMF) curve in aqueous solution for the identity nucleophilic substitution reaction Cl(-) + CH(3)Cl is performed. The free energy of activation is calculated to be 27.1 kcal/mol which compares very well with the experimentally determined barrier height of 26.6 kcal/mol. Furthermore, the calculated PMF is almost superimposed with that previously calculated using the computationally rigorous Monte Carlo with importance sampling method (Chandrasekhar, J.; Smith, S. F.; Jorgensen, W. L. J. Am. Chem. Soc. 1985, 107, 154). Using the calculated PMF, a crude estimate of the solvated kinetic transmission coefficient also compares well with that of previous more accurate simulations. These results indicate that the coupled RISM/simulation method provides a cost-effective methodology for studying reactions in solution. 相似文献
5.
We applied the multibaric-multithermal (MUBATH) molecular dynamics (MD) algorithm to an alanine dipeptide in explicit water. The MUBATH MD simulation covered a wide range of conformational space and sampled the states of PII, C5, alphaR, alphaP, alphaL, and C7(ax). On the other hand, the conventional isobaric-isothermal simulation was trapped in local-minimum free-energy states and sampled only a few of them. We calculated the partial molar enthalpy difference DeltaH and partial molar volume difference DeltaV among these states by the MUBATH simulation using the AMBER parm99 and AMBER parm96 force fields and two sets of initial conditions. We compared these results with those from Raman spectroscopy experiments. The Raman spectroscopy data of DeltaH for the C5 state against the PII state agreed with both MUBATH data with the AMBER parm96 and parm99 force fields. The partial molar enthalpy difference DeltaH for the alphaR state and the partial molar volume difference DeltaV for the C5 state by the Raman spectroscopy agreed with those for the AMBER parm96 force field. On the other hand, DeltaV for the alphaR state by the Raman spectroscopy was consistent with our AMBER-parm99 force-field result. All the experimental results fall between those of simulations using AMBER parm96 and parm99 force fields, suggesting that the ideal force-field parameters lie between those of AMBER parm96 and parm99. 相似文献
6.
García-Prieto FF Fdez Galván I Aguilar MA Martín ME 《The Journal of chemical physics》2011,135(19):194502
The ASEP/MD method has been employed for studying the solvent effect on the conformational equilibrium of the alanine dipeptide in water solution. MP2 and density functional theory (DFT) levels of theory were used and results were compared. While in gas phase cyclic structures showing intramolecular hydrogen bonds were found to be the most stable, the stability order is reversed in water solution. Intermolecular interaction with the solvent causes the predominance of extended structures as the stabilizing contacts dipeptide-water are favoured. Free-energy differences in solution were calculated and PPII, α(R), and C5 conformers were identified as the most stable at MP2 level. Experimental data from Raman and IR techniques show discrepancies about the relative abundance of α(R) y C5, our results support the Raman data. The DFT level of theory agrees with MP2 in the location and stability of PPII and α(R) forms but fails in the location of C5. MP2 results suggest the possibility of finding traces of C7eq conformer in water solution, in agreement with recent experiments. 相似文献
7.
We present multiple dynamic transition pathways on the two-dimensional dihedral plane between conformational states of the alanine dipeptide. The method used in this study is dynamic importance sampling (DIMS). To perform DIMS, unbiased molecular dynamic simulations are used to generate equilibrium ensembles for the alanine dipeptide within different states. Free energy surfaces on the dihedral plane are calculated from the equilibrium simulations, and four energy minima defined from the surface are used as the starting and ending points for DIMS dynamics. The DIMS method represents an important step towards finding multiple transition pathways within complex biomolecular systems. 相似文献
8.
Okumura H 《Physical chemistry chemical physics : PCCP》2011,13(1):114-126
The partial multicanonical algorithm for molecular dynamics and Monte Carlo simulations samples a wide range of an important part of the potential energy. Although it is a strong technique for structure prediction of biomolecules, the choice of the partial potential energy has not been optimized. In order to find the best choice, partial multicanonical molecular dynamics simulations of an alanine dipeptide in explicit water solvent were performed with 15 trial choices for the partial potential energy. The best choice was found to be the sum of the electrostatic, Lennard-Jones, and torsion-angle potential energies between solute atoms. In this case, the partial multicanonical simulation sampled all of the local-minimum free-energy states of the P(II), C(5), α(R), α(P), α(L), and C states and visited these states most frequently. Furthermore, backbone dihedral angles ? and ψ rotated very well. It is also found that the most important term among these three terms is the electrostatic potential energy and that the Lennard-Jones term also helps the simulation to overcome the steric restrictions. On the other hand, multicanonical simulation sampled all of the six states, but visited these states fewer times. Conventional canonical simulation sampled only four of the six states: The P(II), C(5), α(R), and α(P) states. 相似文献
9.
We present an automated conformational analysis program, CAMDAS (Conformational Analyzer with Molecular Dynamics And Sampling). CAMDAS performs molecular dynamics (MD) calculations for a target molecule and samples conformers from the trajectory of the MD. The program then evaluates the similarities between each of the sampled conformers in terms of the root- mean-square deviations of the atomic positions, clusters similar conformers, and finally prints out the clustered conformers. This MD-based conformational analysis is a broadly used method, and CAMDAS is intended to provide a convenient framework for the method. CAMDAS has the ability to find the representative conformers automatically from an arbitrarily given structure of the molecule. The accuracy of the program was examined using N- acetylalanine-N-methylamide, and the obtained result was consistent with that of the systematic search method. In the test calculation of cyclodecane, CAMDAS could identify most of the known conformers and their conformational enantiomers by examining only 5000 conformers. In addition, the potential-scaled method, which we have developed previously as an accelerating technique for MD, could find two additional conformers of cyclodecane that have not been reported. CAMDAS presents a convenient way to find the energetically possible conformers of a molecule, which is needed especially in the early stage of drug design. 相似文献
10.
Shun Zhou Wan Cun Xin Wang Zhe Xin Xiang Yun Yu Shi 《Journal of computational chemistry》1997,18(12):1440-1449
A merger of the Poisson–Boltzmann equation and stochastic dynamics simulation is examined using illustrative calculations of alanine dipeptide. The boundary element method (BEM) is used to calculate the hydration forces acting on the solute molecule based on the surroundings. Computational efficiency is achieved by the use of a simple hydration model and a coarse boundary element. Nonetheless, the conformational distribution obtained from this new method is reasonable compared with other theoretical and computational results. Detailed analysis has been accomplished in terms of the hydration interactions and solvation energies. The results indicate that the new simulation method provides an obvious improvement over the conventional stochastic dynamics simulation technique. The further improvement of the hydration model and future application to large molecules are also discussed. © 1997 John Wiley & Sons, Inc. J Comput Chem 18 : 1440–1449, 1997 相似文献
11.
We implemented an interaction site model integral equation for rigid molecules based on a density-functional theory where the molecular orientation is explicitly considered. In this implementation of the integral equation, multiple integral of the degree of freedom of the molecular orientation is performed using efficient quadrature methods, so that the site-site pair correlation functions are evaluated exactly in the limit of low density. We apply this method to Cl(2), HCl, and H(2)O molecular fluids that have been investigated by several integral equation studies using various models. The site-site pair correlation functions obtained from the integral equation are in good agreement with the one from a simulation of these molecules. Rotational invariant coefficients, which characterize the microscopic structure of molecular fluids, are determined from the integral equation and the simulation in order to investigate the accuracy of the integral equation. 相似文献
12.
The authors present an implementation of the three-dimensional reference interaction site model self-consistent-field (3D-RISM-SCF) method. First, they introduce a robust and efficient algorithm for solving the 3D-RISM equation. The algorithm is a hybrid of the Newton-Raphson and Picard methods. The Jacobian matrix is analytically expressed in a computationally useful form. Second, they discuss the solute-solvent electrostatic interaction. For the solute to solvent route, the electrostatic potential (ESP) map on a 3D grid is constructed directly from the electron density. The charge fitting procedure is not required to determine the ESP. For the solvent to solute route, the ESP acting on the solute molecule is derived from the solvent charge distribution obtained by solving the 3D-RISM equation. Matrix elements of the solute-solvent interaction are evaluated by the direct numerical integration. A remarkable reduction in the computational time is observed in both routes. Finally, the authors implement the first derivatives of the free energy with respect to the solute nuclear coordinates. They apply the present method to "solute" water and formaldehyde in aqueous solvent using the simple point charge model, and the results are compared with those from other methods: the six-dimensional molecular Ornstein-Zernike SCF, the one-dimensional site-site RISM-SCF, and the polarizable continuum model. The authors also calculate the solvatochromic shifts of acetone, benzonitrile, and nitrobenzene using the present method and compare them with the experimental and other theoretical results. 相似文献
13.
A systematic approach for increasing the accuracy of the reference interaction site model (RISM) theory is introduced that uses input from simulation results to produce very accurate site-site pair correlation functions for single component molecular liquids. The methodology allows the computation of the "RISM bridge function." Realistic molecular liquids such as water, alcohols, amides, and others are investigated, and the merits and limitations of the method for each of these liquids are examined in relation to the known deficiencies of the RISM theory. 相似文献
14.
Thermodynamic and structural properties of various models of liquid methanol are investigated in the framework provided by the reference interaction site model (RISM) theory of molecular fluids. The theoretical predictions are systematically compared with molecular dynamics simulations both at ambient conditions and along a few supercritical isotherms. RISM results for the liquid-vapor phase separation are also obtained and assessed against available Gibbs ensemble Monte Carlo data. At ambient conditions, the theoretical correlations weakly depend on the specific details of the molecular models and reproduce the simulation results with different degrees of accuracy, depending on the pair of interaction sites considered. The position and the strength of the hydrogen bond are quite satisfactorily predicted. RISM results for the internal energy are almost quantitative whereas the pressure is generally overestimated. As for the liquid-vapor phase coexistence, RISM predictions for the vapor branch and for the critical temperature are quite accurate; on the other side, the liquid branch densities, and consequently the critical density, are underestimated. We discuss our results in terms of intrinsic limitations, and suitable improvements, of the RISM approach in describing the physical properties of polar fluids, and in the perspective of a more general investigation of mixtures of methanol with nonpolar fluids of specific interest in the physics of associating fluids. 相似文献
15.
We have implemented the combined quantum mechanical (QM)/molecular mechanical (MM) molecular dynamics (MD) simulations of alanine dipeptide in water along with the polarizable and nonpolarizable classical MD simulations with different models of water. For the QM/MM MD simulation, the alanine dipeptide is treated with the AM1 or PM3 approximations and the fluctuating solute dipole moment is calculated by the Mulliken population analysis. For the classical MD simulations, the solute is treated with the polarizable or nonpolarizable AMBER and polarizable CHARMM force fields and water is treated with the TIP3P, TIP4P, or TIP5P model. It is found that the relative populations of right-handed alpha-helix and extended beta and P(II) conformations in the simulation trajectory strongly depend on the simulation method. For the QM/MM MD simulations, the PM3/MM shows that the P(II) conformation is dominant, whereas the AM1/MM predicts that the dominant conformation is alpha(R). Polarizable CHARMM force field gives almost exclusively P(II) conformation and other force fields predict that both alpha-helical and extended (beta and P(II)) conformations are populated with varying extents. Solvation environment around the dipeptide is investigated by examining the radial distribution functions and numbers and lifetimes of hydrogen bonds. Comparing the simulated IR and vibrational circular dichroism spectra with experimental results, we concluded that the dipeptide adopts the P(II) conformation and PM3/MM, AMBER03 with TIP4P water, and AMBER polarizable force fields are acceptable for structure determination of the dipeptide considered in this paper. 相似文献
16.
Because proteins and DNA interact with each other and with various small molecules in the presence of water molecules, we cannot ignore their hydration when discussing their structural and energetic properties. Although high-resolution crystal structure analyses have given us a view of tightly bound water molecules on their surface, the structural data are still insufficient to capture the detailed configurations of water molecules around the surface of these biomolecules. Thanks to the invention of various computational algorithms, computer simulations can now provide an atomic view of hydration. Here, we describe the apparent patterns of DNA hydration calculated by using two different computational methods: Molecular dynamics (MD) simulation and three-dimensional reference interaction site model (3D-RISM) theory. Both methods are promising for obtaining hydration properties, but until now there have been no thorough comparisons of the calculated three-dimensional distributions of hydrating water. This rigorous comparison showed that MD and 3D-RISM provide essentially similar hydration patterns when there is sufficient sampling time for MD and a sufficient number of conformations to describe molecular flexibility for 3D-RISM. This suggests that these two computational methods can be used to complement one another when evaluating the reliability of the calculated hydration patterns. 相似文献
17.
A method of simulating two-dimensional infrared spectra accounting for nonadiabatic effects is presented. The method is applied to the amide I modes of a dipeptide. The information necessary to construct the time-dependent Hamiltonian for the system is extracted from molecular dynamics simulations using a recently published ab initio-based model. It is shown that the linear absorption spectrum agrees with experiment only if the nonadiabatic effects are accounted for. The two-dimensional infrared spectrum is predicted for a range of mixing times. It is shown that population transfer between the amide I site vibrations affects the anisotropy at longer mixing times. It is also demonstrated that the population transfer can, to a good approximation, be extracted from the simulated spectra using a procedure that should also be applicable to experimental spectra. 相似文献
18.
A new efficient method is developed for solving integral equations based on the reference interaction site model (RISM) of molecular liquids. The method proposes the expansion of site-site correlation functions into the wavelet series and further calculations of the approximating coefficients. To solve the integral equations we have applied the hybrid scheme in which the coarse part of the solution is calculated by wavelets with the use of the Newton-Raphson procedure, while the fine part is evaluated by the direct iterations. The Coifman 2 basis set is employed for the wavelet treatment of the coarse solution. This wavelet basis set provides compact and accurate approximation of site-site correlation functions so that the number of basis functions and the amplitude of the fine part of solution decrease sufficiently with respect to those obtained by the conventional scheme. The efficiency of the method is tested by calculations of SPC/E model of water. The results indicated that the total CPU time to obtain solution by the proposed procedure reduces to 20% of that required for the conventional hybrid method. 相似文献
19.
20.
We propose the thermodynamic integration along a spatial reaction coordinate using the molecular dynamics simulation combined with the three-dimensional reference interaction site model theory. This method provides a free energy calculation in solution along the reaction coordinate defined by the Cartesian coordinates of the solute atoms. The proposed method is based on the blue moon algorithm which can, in principle, handle any reaction coordinate as far as it is defined by the solute atom positions. In this article, we apply the present method to the complex formation process of the crown ether 18-Crown-6 (18C6) with the potassium ion in an aqueous solution. The separation between the geometric centers of these two molecules is taken to be the reaction coordinate for this system. The potential of mean force (PMF) becomes the maximum at the separation between the molecular centers being ~4 A?, which can be identified as the free energy barrier in the process of the molecular recognition. In a separation further than the free energy barrier, the PMF is slightly reduced to exhibit a plateau. In the region closer than the free energy barrier, approach of the potassium ion to the center of 18C6 also decreases the PMF. When the potassium ion is accommodated at the center of 18C6, the free energy is lower by -5.7 ± 0.7 kcal/mol than that at the above mentioned plateau or converged state. By comparing the results with those from the free energy calculation along the coupling parameters obtained in our previous paper [T. Miyata, Y. Ikuta, and F. Hirata, J. Chem. Phys. 133, 044114 (2010)], it is found that the effective interaction in water between 18C6 and the potassium ion vanishes beyond the molecular-center-separation of 10 A?. Furthermore, the conformation of 18C6 is found to be significantly changed depending upon the 18C6-K(+) distance. A proper conformational sampling and an accurate solvent treatment are crucial for realizing the accurate PMF, and we believe that the proposed method is useful to evaluate the PMF in a solution. A discussion upon the PMF in terms of the three-dimensional distribution function for the solvent is also presented. 相似文献