首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Factors affecting the sensitivity and selectivity of the determination of diuretics, anabolic steroids, central nervous system stimulants, and narcotics in the analysis of human urine extracts by high-performance liquid chromatography-tandem mass spectrometry with atmospheric pressure electrospray ionization and recording of positive ions were investigated. Mass spectra were obtained for all of the test compounds; the characteristic ions, retention times, detection limits, degree of ionization suppression by the matrix, the extraction of the analytes from human biological fluids were determined for all analytes; the selectivity and specificity of determination were evaluated.  相似文献   

2.
A new combined doping control screening method for the analysis of anabolic steroids in human urine using liquid chromatography/electrospray ionization orthogonal acceleration time-of-flight mass spectrometry (LCoaTOFMS) and gas chromatography/electron ionization orthogonal acceleration time-of-flight mass spectrometry (GCoaTOFMS) has been developed in order to acquire accurate full scan MS data to be used to detect designer steroids. The developed method allowed the detection of representative prohibited substances, in addition to steroids, at concentrations of 10 ng/mL for anabolic agents and metabolites, 30 ng/mL for corticosteroids, 500 ng/mL for stimulants and beta-blockers, 250 ng/mL for diuretics, and 200 ng/mL for narcotics. Sample preparation was based on liquid-liquid extraction of hydrolyzed human urine, and the final extract was analyzed as trimethylsilylated derivatives in GCoaTOFMS and underivatized in LCoaTOFMS in positive ion mode. The sensitivity, mass accuracy, advantages and limitations of the developed method are presented.  相似文献   

3.
This paper reports two highly efficient liquid chromatography-mass spectrometry (LC-MS) methods for the screening of anabolic steroids, corticosteroids, and acidic drugs for the purpose of doping control in equine sports. Sample extraction was performed using a mixed-mode C8-SCX solid-phase extraction (SPE) cartridge. The first eluted fraction (acidic/neutral fraction) was base-washed and the resulting organic extract was used for the screening of anabolic steroids and corticosteroids by LC-MS using multiple reaction monitoring (MRM) in the positive electrospray ionisation (ESI) mode. The remaining aqueous extract was re-adjusted to pH 6 and acidic drugs were recovered by liquid/liquid extraction. Detection was again achieved using LC-MRM but in the negative ESI mode. A total of 40 anabolic steroids and corticosteroids, and over 50 acidic drugs, including some cyclooxygenase-2 (COX-2) inhibitors, oxicams, anti-diabetics, sedatives, diuretics and Delta(9)-tetrahydro-11-norcannabinol-9-carboxylic acid, could be covered by the two LC-MS methods. Both methods utilized a high efficiency reversed-phase column (3.3 cm L x 2.1 mm I.D. with 3 microm particles) coupled with a fast-scanning triple-quadrupole mass spectrometer to achieve fast turnaround times. The overall turnaround times for both methods were 10 min, inclusive of post-run and equilibration times.  相似文献   

4.
毛细管区带电泳用于多种类兴奋剂的同时快速分离检测   总被引:3,自引:2,他引:1  
肖惠  童萍  冯强  张兰 《色谱》2008,26(4):444-448
建立了一种同时分离检测包括利尿剂、蛋白同化剂、β-阻断剂、麻醉剂、β2-激动剂、刺激剂等6类8种兴奋剂的毛细管区带电泳-紫外检测法。优化的色谱条件为:以50 mmol/L甲酸铵-氨水(pH 7.8)缓冲液为运行液,于3 kPa下进样10 s,分离电压为20 kV,检测波长为214 nm。在此条件下,8种兴奋剂在7 min内实现了快速的基线分离。在相应的浓度范围内,8种组分的浓度与峰高呈良好的线性关系,检出限达为0.2~0.7 μg/mL。该方法快速,分析成本低,无污染,非常适用于多种类兴奋剂的同时快速检测。  相似文献   

5.
Doping is banned by national and international sports federations and by the IOC. Doping is the use of a substance belonging to one of the banned groups and te use of a doping method. The groups of doping substances, namely stimulants, narcotics, anabolic agents, diuretics and peptide hormones, are introduced. The main analytical methods are based on gas chromatography and mass spectrometry (MS) and are summarized for stimulants and anabolic steroid hormones. The use of mass spectrometry is unambigously necessary for identification of banned substance. In addition to GC/low resolution MS methods for anabolic agents, more sophisticated methods such as high resolution MS (to increase sensitivity) and carbon isotope raio MS (to distinguish between endogenous production and exogenous application of anabolic hormones) are used in doping control.  相似文献   

6.
Since 1997, alterations regarding the anti‐doping rules of sport federations have led to the prohibition of new classes of substances such as plasma volume expanders, anti‐estrogens, aromatase inhibitors and artificial oxygen carriers (e.g. perfluorocarbons, cross‐linked hemoglobins) besides the classical doping agents including stimulants, narcotics, anabolic agents, diuretics and peptide hormones. The determination of doping substances, which has been based mainly on GC‐MS procedures, is more and more performed employing LC‐MS and LC‐MS/MS instruments. For instance, the classes of betablockers, diuretics, corticosteroids and newly proteins such as the cross‐linked hemoglobin 'Hemopure' are effectively detected utilizing LC‐MS(/MS) systems. The urinary identification of erythropoietin (EPO)‐doping is accomplished by means of an assay composed by isoelectric focusing with subsequent visualisation of characteristic EPO bands with monoclonal EPO antibodies (double blotting).  相似文献   

7.
This work presents a high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) procedure for selective and reliable screening of corticosteroids and diuretics in human urine. Sample preparation included the extraction, evaporation of the organic extract under nitrogen, and solution of the dry residue. The extract was analyzed by HPLC combined with tandem mass spectrometry using electro-spraying ionization at atmospheric pressure with negative ion recording. The mass spectra of all compounds were recorded, and the characteristic ions, retention times, and detection limits were determined. The procedure was validated by evaluating the degree of the matrix suppression of ionization, extraction of analytes from human biological liquid, and the selectivity and specificity of determination.  相似文献   

8.
This paper presents a general screening method, based on liquid chromatography/mass spectrometry (LC/MS), for the simultaneous detection in human urine of 72 xenobiotics (21 diuretics, 16 synthetic glucocorticoids, 17 beta-adrenergic drugs, 10 stimulants, 5 anti-oestrogens and 3 anabolic steroids), excreted free or as glucuro-conjugates in urine. Although the method has been specifically designed and evaluated in view of its potential application to anti-doping analyses, it can also be effective in other areas of analytical toxicology. Sample preparation was based on two liquid/liquid separation steps (performed at alkaline and at acid pH, respectively) of hydrolyzed human urine, and then an assay by LC/MS-MS in positive and negative ionization mode using an electrospray ionization source (ESI) and multiple reaction monitoring (MRM) as the acquisition mode. The overall time needed for an LC run was less than 15 minutes. All compounds showed good reproducibility in terms of both the retention times (CV%<1) and the relative abundances of the diagnostic transitions (CV%<10). The limits of detection (LOD) were in the range of 1–50 ng/mL for glucocorticoids, anti-oestrogens and steroids, and 50–500 ng/mL for diuretics, beta-adrenergic drugs and stimulants, thus satisfying the minimum required performance limits (MRPL) set by the World Anti-Doping Agency (WADA) for the accredited anti-doping laboratories.  相似文献   

9.
The use of performance enhancing drugs in sports is prohibited. For the detection of misuse of such substances gas chromatography or liquid chromatography coupled to mass spectrometry are the most frequently used detection techniques. In this work the development and validation of a fast gas chromatography tandem mass spectrometric method for the detection of a wide range of doping agents is described. The method can determine 13 endogenous steroids (the steroid profile), 19-norandrosterone, salbutamol and 11-nor-Δ9-tetrahydrocannabinol.9carboxylic acid in the applicable ranges and to detect qualitatively over 140 substances in accordance with the minimum required performance levels of the World Anti-Doping Agency in 1ml of urine. The classes of substances included in the method are anabolic steroids, β2-agonists, stimulants, narcotics, hormone antagonists and modulators and beta-blockers. Moreover, using a short capillary column and hydrogen as a carrier gas the run time of the method is less than 8min.  相似文献   

10.
A unification of doping-control screening procedures of prohibited small molecule substances—including stimulants, narcotics, steroids, β2-agonists and diuretics—is highly urgent in order to free resources for new classes such as banned proteins. Conceptually this may be achieved by the use of a combination of one gas chromatography–time-of-flight mass spectrometry method and one liquid chromatography–time-of-flight mass spectrometry method. In this work a quantitative screening method using high-resolution liquid chromatography in combination with accurate-mass time-of-flight mass spectrometry was developed and validated for determination of glucocorticosteroids, β2-agonists, thiazide diuretics, and narcotics and stimulants in urine. To enable the simultaneous isolation of all the compounds of interest and the necessary purification of the resulting extracts, a generic extraction and hydrolysis procedure was combined with a solid-phase extraction modified for these groups of compounds. All 56 compounds are determined using positive electrospray ionisation with the exception of the thiazide diuretics for which the best sensitivity was obtained by using negative electrospray ionisation. The results show that, with the exception of clenhexyl, procaterol, and reproterol, all compounds can be detected below the respective minimum required performance level and the results for linearity, repeatability, within-lab reproducibility, and accuracy show that the method can be used for quantitative screening. If qualitative screening is sufficient the instrumental analysis may be limited to positive ionisation, because all analytes including the thiazides can be detected at the respective minimum required levels in the positive mode. The results show that the application of accurate-mass time-of-flight mass spectrometry in combination with generic extraction and purification procedures is suitable for unification and expansion of the window of screening methods of doping laboratories. Moreover, the full-scan accurate-mass data sets obtained still allow retrospective examination for emerging doping agents, without re-analyzing the samples.  相似文献   

11.
The diuretic agents bumetanide, xipamide, indapamide, and related compounds were investigated in order to determine the effect of different ionization sites on their collisionally activated dissociation and the corresponding fragmentation pathways. Therefore, analytes were selectively alkylated, and structural analogues as well as deuterium labeled compounds synthesized, which contain a reduced number of ionizable hydrogen atoms. Thus, specific hydrogen abstractions and their correlated dissociation routes of the negatively charged molecules were eliminated, providing evidence for the influence of the location of ionization on product ion spectra. Fragment ions such as m/z 78 indicate ionization at the commonly present sulfamoyl residue of diuretics but does not exclude additional ionization sites. Product ion spectra of the investigated diuretic agents proved to be composed by fragmentations initiated from different hydrogen abstractions. Moreover, the generation of radical anions by collision-activated dissociation of even-electron precursor ions was observed, the generation of which is discussed by proposed fragmentation pathways.  相似文献   

12.
A new screening procedure for 18 narcotics in urine for anti-doping purposes has been developed using liquid chromatography/triple quadrupole mass spectrometry (LC/MS). Electrospray ionization (ESI) was used as interface. Infusion experiments were performed for all substances to investigate their mass spectrometric behaviour in terms of selecting product specific ions. These product ions were then used to develop a tandem mass spectrometric method using selected reaction monitoring (SRM). For the LC/MS analysis, chromatography was performed on an octadecylsilane column. The total run time of the chromatographic method was 5.5 min. For the sample preparation prior to LC/MS analysis, the urine samples were liquid-liquid extracted at pH 9.5 after overnight enzymatic hydrolysis. Two extraction solvents were evaluated: dichloromethane/methanol 9/1 (v/v), which is currently used for the extraction of narcotics, and diethyl ether, used for the extraction of steroids. With diethyl ether the detection limits for all compounds ranged between 0.5 and 20 ng/mL and with the mixture containing dichloromethane the detection limits ranged between 0.5 and 10 ng/mL. Taking into account the minimum required performance limits of the World Anti-Doping Agency of 200 ng/mL for narcotics, diethyl ether can also be considered as extraction solvent for narcotics. Finally, the described method was applied to the analysis of urine samples previously found to contain narcotics by our routine gas chromatography/mass spectrometry (GC/MS) method.  相似文献   

13.
A comprehensive screening method for the detection of prohibited substances in doping control is described and validated. This method is capable of detecting over 150 components mentioned on the list of the World Anti-Doping Agency including anabolic androgenic steroids, stimulants and all narcotic agents that are currently analysed using different analytical methods. The analytes are extracted from urine by a combined extraction procedure using freshly distilled diethyl ether and tert-butyl methyl ether as extraction solvents at pH 9.5 and 14 respectively. Prior to GC-MS analysis the residues are combined and derivatised using a mixture of N-methyl-N-trimethylsilyltrifluoroacetamide, NH(4)I and ethanethiol. The mass spectrometer is simultaneously operated in the full scan mode (mass range varies along with GC-oven temperature program) and in the selected ion monitoring mode. The obtained limits of detection are in compliance with the requirements set by the World Anti-Doping Agency. Besides narcotics, stimulants and anabolic androgenic agents, this method is also capable of detecting several agents with anti-estrogenic activity and some beta-agonists. This comprehensive screening method reduces the amount of urine needed and increases the sample throughput without a loss in sensitivity and selectivity.  相似文献   

14.
A sensitive and rapid method based on liquid chromatography-triple-quadrupole tandem mass spectrometry (LC-MS/MS) with electrospray ionization (ESI) has been developed and validated for the screening and confirmation of 44 exogenous anabolic steroids (29 parent steroids and 15 metabolites) in human urine. The method involves an enzymatic hydrolysis, liquid-liquid extraction, and detection by LC-MS/MS. A triple-quadrupole mass spectrometer was operated in positive ESI mode with selected reaction monitoring (SRM) mode for the screening and product ion scan mode for the confirmation. The protonated molecular ions were used as precursor ions for the SRM analysis and product ion scan. The intraday and interday precisions of the target analytes at concentrations of the minimum required performance levels for the screening were 2-14% and 2-15%, respectively. The limits of detection for the screening and confirmation method were 0.1-10 ng/mL and 0.2-10 ng/mL, respectively, for 44 steroids. This method was successfully applied to analysis of urine samples from suspected anabolic steroid abusers.  相似文献   

15.
The ionization of 46 anabolic steroids has been studied. The absence of basic or acidic moieties in most of these analytes makes their direct ionization as [M + H]+ by atmospheric pressure interfaces difficult. The formation of adducts with different components of the mobile phase has been found to be an efficient way to ionize anabolic steroids by electrospray. Different mobile phases using methanol (MeOH) or acetonitrile as organic solvent and HCOOH, Na+ or NH4+ as additives have been tested to favor the adduct formation. A direct correlation between the chemical structure of the anabolic steroid and the possibility to ionize it in a particular chromatographic condition has been found. According to their ionization, anabolic steroids can be divided into seven different groups depending on both the nature and the relative position of their functional groups. The formation of different adducts such as [M + Na + MeOH]+ or [M + H + CH3 CN - H2O]+ is required in order to ionize some of these groups and the optimal mobile phase composition for each group of anabolic steroids is proposed. Despite the ionization limitations due to their chemical structure, most of tested anabolic steroids could be ionized using the adduct formation approach.  相似文献   

16.
Anabolic androgenic steroids are widely abused substances in sports doping. Their detection present limitations regarding the use of soft ion sources such as electrospray or atmospheric pressure chemical ionization by liquid chromatography–tandem mass spectrometry. In the current study, a novel derivatization method was developed for the ionization enhancement of selected anabolic androgenic steroids. The proposed method aims at the introduction of an easily ionizable moiety into the steroid molecule by converting the hydroxyl groups into imidazole carbamates using 1,1′‐carbonyldiimidazole as derivatization reagent. The proposed method was applied to water and urine samples spiked with exogenous anabolic androgenic steroids in various concentration levels. Steroid imidazole carbamate derivatives have shown intensive [M+H]+ signals under electrospray ionization and common fragmentation patterns in tandem mass spectrometry mode with [M‐CO2+H]+ and [M‐ΙmCO2+H]+ as major ions with low collision energy. The obtained results showed that the majority of steroids were detectable at concentrations equal or lower to their minimum required performance level according to the World Anti‐Doping Agency technical document. The proposed method is sensitive with a preparation procedure that could be easily applied to the analysis of doping control samples.  相似文献   

17.
Unification of the screening protocols for a wide range of doping agents has become an important issue for doping control laboratories. This study presents the development and validation of a generic liquid chromatography/time‐of‐flight mass spectrometry (LC/TOFMS) screening method of 241 small molecule analytes from various categories of prohibited substances (stimulants, narcotics, diuretics, β2‐agonists, β‐blockers, hormone antagonists and modulators, glucocorticosteroids and anabolic agents). It is based on a single‐step liquid‐liquid extraction of hydrolyzed urine and the use of a rapid‐resolution liquid chromatography/high‐resolution time‐of‐flight mass spectrometric system acquiring continuous full scan data. Electrospray ionization in the positive mode was used. Validation parameters consisted of identification capability, limit of detection, specificity, ion suppression, extraction recovery, repeatability and mass accuracy. Detection criteria were established on the basis of retention time reproducibility and mass accuracy. The suitability of the methodology for doping control was demonstrated with positive urine samples. The preventive role of the method was proved by the case where full scan acquisition with accurate mass measurement allowed the retrospective reprocessing of acquired data from past doping control samples for the detection of a designer drug, the stimulant 4‐methyl‐2‐hexanamine, which resulted in re‐reporting a number of stored samples as positives for this particular substance, when, initially, they had been reported as negatives. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
The applicability of liquid chromatography/tandem mass spectrometry (LC/MS/MS) for the detection of the free anabolic steroid fraction in human urine was examined. Electrospray ionization (ESI), atmospheric pressure chemical ionization and atmospheric pressure photoionization methods were optimized regarding eluent composition, ion source parameters and fragmentation. The methods were compared with respect to specificity and detection limit. Although all methods proved suitable, LC/ESI-MS/MS with a methanol-water gradient including 5 mM ammonium acetate and 0.01% acetic acid was found best for the purpose. Multiple reaction monitoring allowed the determination of steroids in urine at low nanogram per milliliter levels. LC/MS/MS exhibited high sensitivity and specificity for the detection of free steroids and may be a suitable technique for screening for the abuse of anabolic steroids in sports.  相似文献   

19.
Anabolic steroids are structurally similar compounds, and their product-ion spectra obtained by tandem mass spectrometry under electrospray ionization conditions are quite difficult to interpret because of poly-ring structures and lack of a charge-retaining center in their chemical structures. In the present study, the fragmentation of nine anabolic steroids of interest to the racing industry was investigated by using triple quadrupole mass spectrometer, Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer, and a linear ion trap instrument. With the aid of an expert system software (Mass Frontier version 3.0), accurate mass measurements, and multiple stage tandem mass spectrometric (MS(n)) experiments, fragmentation pathways were elucidated for boldenone, methandrostenolone, tetrahydrogestrinone (THG), trenbolone, normethandrolone and mibolerone. Small differences in the chemical structures of the steroids, such as an additional double-bond or a methyl group, result in significantly different fragmentation pathways. The fragmentation pathways proposed in this paper allow interpretation of major product ions of other anabolic steroids reported by other researchers in a recent publication. The proposed fragmentation pathways are helpful for characterization of new steroids. The approach used in this study for elucidation of the fragmentation pathways is helpful in interpretation of complicated product-ion spectra of other compounds, drugs and their metabolites.  相似文献   

20.
A fast liquid chromatographic/mass spectrometric (LC/MS/MS) screening method for the detection, in urine, of synthetic glucocorticoids, stimulants (formoterol, modafinil and mesocarb), anti-oestrogens (finasteride, exemestane, anastrozole, letrozole and formestane) and synthetic anabolic steroids (stanozolol, gestrinone and tetrahydrogestrinone) is described. All these drugs (and/or their urinary metabolites) can be simultaneously extracted by a single liquid/liquid extraction step, at alkaline pH, after enzymatic hydrolysis with beta-glucuronidase, and assayed in 7 min by LC/MS/MS using electrospray ionization in positive ion mode and multiple reaction monitoring as the acquisition mode. All compounds show good reproducibility of both the retention times (CV% <2%) and the relative abundances (CV% <10%). The limits of detection for the anti-oestrogens, glucocorticoids and steroids are in the range of 1-30 ng/mL, and for the stimulants are in the range of 100-200 ng/mL, thus satisfying the minimum required performance limits of the World Anti-Doping Agency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号