首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The phase behavior of a partially miscible blend of poly(ethylene oxide) (PEO) and cellulose acetate butyrate (CAB) and the crystalline microstructure of PEO in the blend were studied with differential scanning calorimetry (DSC), optical microscopy, and synchrotron small‐angle X‐ray scattering (SAXS) methods. PEO/CAB showed a lower critical solution temperature (LCST) of 168 °C at the critical composition of PEO of 60 wt %. All blend compositions showed a single glass‐transition temperature (Tg) when they were prepared at temperatures lower than the LCST. However, with increasing CAB content, Tg of the blend changed abruptly at 70 wt % CAB; that is, a cusp existed. Below 70 wt % CAB, the change in Tg with blend composition was predicted by the Brau–Kovacs equation, whereas this change was predicted by the Fox equation at higher CAB contents. A gradual but small depression of the melting point of PEO in the blend with an increasing amount of CAB suggested that the PEO/CAB blends exhibited a weak intermolecular interaction. From DSC and SAXS experiments, it was found that amorphous CAB was incorporated into the interlamellar region of PEO for blends with less than 20 wt % CAB, whereas it was segregated to exist in the interfibrillar region in PEO for other blends with larger amounts of CAB. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1673–1681, 2002  相似文献   

2.
In the present study the effect of relative humidity (RH) during spin-coating process on the structural characteristics of cellulose acetate (CA), cellulose acetate phthalate (C-A-P), cellulose acetate butyrate (CAB) and carboxymethyl cellulose acetate butyrate (CMCAB) films was investigated by means of atomic force microscopy (AFM), ellipsometry and contact angle measurements. All polymer solutions were prepared in tetrahydrofuran (THF), which is a good solvent for all cellulose esters, and used for spin-coating at RH of (35 ± 5)%, (55 ± 5)% or (75 ± 5)%. The structural features were correlated with the molecular characteristics of each cellulose ester and with the balance between surface energies of water and THF and interface energy between water and THF. CA, CAB, CMCAB and C-A-P films spin-coated at RH of (55 ± 5)% were exposed to THF vapor during 3, 6, 9, 60 and 720 min. The structural changes on the cellulose esters films due to THF vapor exposition were monitored by means of AFM and ellipsometry. THF vapor enabled the mobility of cellulose esters chains, causing considerable changes in the film morphology. In the case of CA films, which are thermodynamically unstable, dewetting was observed after 6 min exposure to THF vapor. On the other hand, porous structures observed for C-A-P, CAB and CMCAB turned smooth and homogeneous after only 3 min exposure to THF vapor.  相似文献   

3.
In this work, four kinds of cellulose aliphatate esters, cellulose acetate (CA), cellulose propionate (CP), cellulose butyrate (CB) and cellulose acetate butyrate (CAB) are synthesized by the homogeneous acylation reactions in cellulose/AmimC1 solutions. These cellulose aliphatate esters are used to prepare gas separation membranes and the effects of molecular structure, such as substituent type, degree of substitution (DS) and distribution of substituents, on the gas permeability are studied. For CAs, as the DS increases, their gas permeabilities for all five gases (02, N2, CH4, CO and CO2) increase, and the ideal permselectivity significantly increases first and then slightly decreases. At similar DS value, the homogenously synthesized CA (distribution order of acetate substituent: C6 〉 C3 〉 C2) is superior to the heterogeneously synthesized CA (distribution order of acetate substituent: C3 〉 C2 〉 C6) in gas separation. With the increase of chain length of aliphatate substituents from acetate to propionate, and to butyrate, the gas permeability of cellulose aliphatate esters gradually increases. The cellulose mixed ester CAB with short acetate groups and relatively long butyrate groups exhibits higher gas permeability or better permselectivity than individual CA or CB via the alteration of the DS of two substituents.  相似文献   

4.
Esters of cellulose with trifluoroethoxy acetic acid (TFAA) were prepared in homogeneous phase using a mixed anhydride with p‐toluenesulfonic acid. Esters with low degree of substitution (DS), and with DS rising from 0 to 3, had hydrophobic character that prevented the usual association with moisture, which is otherwise typical of cellulose esters with low DS. Cellulose trifluoroethoxy acetate (CT) had Tg's declining by about 40 °C per DS‐unit (from 160 to 41 °C) as DS rose from 1 to 3. Mixed esters, cellulose derivatives with acetate and trifluoroethoxy acetate substituents (CAT), exhibited glass‐to‐rubber and melting transitions by DSC. A linear relationship between both Tg and Tm with respect to DS was recorded with the Tg and Tm separated by 30° to 40 °C. This is consistent with cellulose esters described elsewhere. Surprisingly, the Tg's of CT and CAT were found to be identical when the DS was equivalent to the DS of the fluoro substituents (DSF). © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 486–494, 2000  相似文献   

5.
Spin-coated films of cellulose acetate (CA), cellulose acetate propionate (CAP), cellulose acetate butyrate (CAB) and carboxymethylcellulose acetate butyrate (CMCAB) have been characterized by ellipsometry, atomic force microscopy (AFM) and contact angle measurements. The films were spin-coated onto silicon wafers, a polar surface. Mean thickness values were determined by means of ellipsometry and AFM as a function of polymer concentration in solutions prepared either in acetone or in ethyl acetate (EA), both are good solvents for the cellulose esters. The results were discussed in the light of solvent evaporation rate and interaction energy between substrate and solvent. The effects of annealing and type of cellulose ester on film thickness, film morphology, surface roughness and surface wettability were also investigated. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

6.
Cellulose derivatives with low degrees of substitution (i.e., DS < 1.5) often fail to reveal glass transition temperatures (Tg) by virtue of their tenacious adherence to moisture, thus preventing systematic analysis of substituent effects (size and DS) on Tg and Tm transitions. On the other hand, cellulose triesters have Tms that decline with acyl substituent size except when the substituent size becomes very large (i.e., > C6), and they have Tgs within 5–20°C of their Tms. This proximity is unusual for a semicrystalline material, and it interferes with the crystallization process that occurs between Tm and Tg. Triesters of cellulose with mixed acyl substituents (one smaller and one larger) allow not only unambiguous observation of Tgs and Tms but also an adjustable Δ(Tm ? Tg) window that depends upon the size and the DS of the larger substituent. The materials studied including cellulose acetate butyrate triesters (DSbu 0.8–2.6), cellulose acetate hexanoate triesters (DShex 0–3.0), and cellulose acetate (DSac 2.44), revealed that only the mixed esters, in which the bulkier acyl group is in the range of DS 0.3–1.0, had a Δ(Tm ? Tg) value in excess of 40°C. Although the Tm of cellulose acetate hexanoate declined by ca. 150°C per unit of DShex as DShex rose from 0 to 1, this was only ca. 25°C between DShex of 1 and 3. Frequently observed dual-melt endotherms were attributed to two separate crystal morphologies. ©1995 John Wiley & Sons, Inc.  相似文献   

7.
Solution behavior of carboxymethylcellulose acetate butyrate (CMCAB) in acetone and ethyl acetate has been investigated by small-angle X-ray scattering (SAXS) and capillary viscometry and correlated with the characteristics of CMCAB films. Viscosity and SAXS measurements showed that ethyl acetate is a better solvent than acetone for CMCAB. Thin films of CMCAB were deposited onto silicon wafers (Si/SiO2) by spin coating. AFM images revealed that CMCAB spin coated films from solutions prepared in ethyl acetate were homogeneous and flat. However, films obtained from solutions in acetone were very rough. Contact angle measurements with polar and apolar test liquids characterized CMCAB surfaces as hydrophobic and allowed estimating the surface energy of CMCAB. Sum frequency generation vibrational spectroscopy was used to understand the role played by solvents and to gain insight about molecular orientation at Si/SiO2/CMCAB interface.  相似文献   

8.
Poly(ethylene terephthalate) (PET) (intrinsic viscosity 0.59) and cellulose (Whatman) are compatible in up to 7.5% (w/v) solutions in trifluoroacetic acid and in mixtures of trifluoroacetic acid and methylene chloride. Evaporation of the solutions yielded films that did not contain cellulose per se, but rather partial esters of cellulose and trifluoroacetic acid. Clear films were cast from these solutions with compositions of 100/0, 75/25, 50/50, 25/75, and 0/100 PET. cellulose (w/w). Infrared spectra and DSC measurements indicate specific polymer-polymer interaction although two Tg were observed. Hydrolysis of the trifluoroacetate films to blends of PET and regenerated cellulose was accomplished by suspending the films in water at the boil. Infrared spectra indicate no interaction between the two polymers, although the films of the 50/50 and 25/75 PET. cellulose compositions were clear. The 25/75 composition, from its Tg and melting-point behavior appears to be a dispersion of very small-particle PET in a cellulose matrix. The 75/25 composition became opalescent during the hydrolysis and may be a dispersion of large-particle cellulose in a PET matrix. The regenerated cellulose appears to be a mixture of cellulose II and IV polymorphs.  相似文献   

9.
Mixed esters of hydrolyzed starch represent a new class of chemically modified natural polymers demonstrating a broad range of properties. Members of this class of polymers have both neutral aliphatic ester side chains and carboxyl-functional half-ester side chains. Use of hydrolyzed starch as the backbone polymer results in products that are considerably lower in molecular weight than whole starch derivatives, but which are still polymeric in character. Synthesis proceeds smoothly in pyridine using anhydrides as acylating agents and the pure solid mixed ester products are isolated by precipitation in water. Measurement of degree of substitution (D.S.) by NMR or hydrolysis characterizes the chemical composition of the polymers. The actual D.S. achieved in the synthesis depends upon the competition between starch and residual water for anhydrides, which can be quantitatively evaluated by monitoring the acid content of the reaction mixture. The Tg and Ts of starch mixed esters vary with both D. S. and length of the aliphatic ester side chain. As the composition changes from acetate—phthalate to butyrate—phthalate a Tg range of greater than 100°C is observed. Hydrolyzed starch mixed esters are hydrophobic and organic-soluble, but may be readily solubilized in aqueous base through the half-ester groups. Solutions show surface activity which varies according to the type and extent of substitution.  相似文献   

10.
Cellulose powder and cellulose pellets obtained by pressing the microcrystalline powder were studied using differential scanning calorimetry (DSC), differential thermal analysis (DTA), and thermal gravimetry (TG). The TG method enabled the assessment of water content in the investigated samples. The glass phase transition in cellulose was studied using the DSC method, both in heating and cooling runs, in a wide temperature range from −100 to 180 °C. It is shown that the DSC cooling runs are more suitable for the glass phase transition visualisation than the heating runs. The discrepancy between glass phase transition temperature T g found using DSC and predictions by Kaelbe’s approach are observed for “dry” (7 and 5.3% water content) cellulose. This could be explained by strong interactions between cellulose chains appearing when the water concentration decreases. The T g measurements vs. moisture content may be used for cellulose crystallinity index determination.  相似文献   

11.
The NMR spectra of water adsorbed at various relative humidities on various cellulose ester membranes have been studied. Membranes of cellulose acetate (CA), cellulose triacetate (CTA), and cellulose acetate butyrate (CAB) were investigated. It was found that the resonance peak of a liquid imbibed in or adsorbed on membranes from high relative humidity is very sensitive to the angle between the membrane plane and the direction of the magnetic field, shifting 5–7 ppm to higher fields as the membrane plane is rotated from a perpendicular to a parallel position with respect to the direction of the external magnetic field. This phenomenon was found to be independent of the nature of the polymeric material (namely CA, CTA, or CAB), porosity of the membrane (varying from an “all bulk” dense sheet to an 80% porosity and 0.2 μm average pore size membrane), nature of the magnetic nuclei (H2O or D2O), intensity of the external magnetic field (60 Mcps or 100 Mcps), and nature of the liquid in the membrane (water, methanol, or n-hexane). It is therefore concluded that the dependence of the position of the resonance peak on the position of the membrane plane with respect to the external magnetic field, is a geometrical phenomenon due to the magnetic “bulk susceptibility” of the medium. Quantitative estimations of the magnitude of the diamagnetic susceptibility effect in a cylindrically rolled sheet are given. These estimates agree well with the experimentally observed “splittings.”  相似文献   

12.
The cellulose acetate-grafted-poly(glycidyl methacrylate) copolymers were synthesized successfully by free radical polymerization. The resulting copolymer was characterized by proton nuclear magnetic resonance (1H-NMR), solid-state 13C-NMR, Fourier transform infrared spectroscopy (FTIR) and gel permeation chromatography (GPC). The crystallization behavior, thermal properties, specific particle surface area, moisture sorption behavior of the modified cellulose acetate were investigated by wide angle X-ray diffraction (WAXD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), Brunauer-Emmett-Teller (BET) method and Dynamic Vapor Sorption (DVS) instrument. It was found that the poly(glycidyl methacrylate) (PGMA) grafting was effective in improving the water adsorption of cellulose acetate (CA) changing the specific surface area, and reducing the Tg of copolymers.  相似文献   

13.
The release rate of drugs from an OROS® is controlled by semipermeable membranes composed typically of cellulose acetate (CA) with various flux enhancers. Cellulose acetate butyrate (CAB) was identified as a viable alternative. The CAB membrane matched the CA membrane in robustness but had superior drying properties, offering particular advantages for thermolabile formulations. Studies were conducted to characterize CAB membrane properties with respect to performance of OROS® systems. Four different membrane formulations with varying plasticizer type and concentration were investigated. The CAB based membranes exhibited superior drying characteristics and similar functionality to the CA:polyethylene glycol (PEG) membranes used as a control. A linear relationship was observed between the level of flux enhancer and release rate. The stability of the membrane was evaluated based on release profiles after system storage at various conditions. The CAB membranes appeared to have stability comparable to the standard CA membrane. A linear relationship between membrane weight and release rate as well as the time required to release 90% of a drug from the system [T90] for a model formulation was observed. In conclusion, the newly identified alternative membrane composition allows for the use of thinner membranes, thereby reducing cost of goods, coating time and, most importantly, membrane drying time.  相似文献   

14.
Alternating and random copolymers of ethyl α-cyanocinnamate and vinyl acetate were studied. Infrared, 1H, and 13C spectra of the copolymers are discussed by comparison with a model compounds, poly(vinyl acetate), and various copolymers. The decomposition temperature and Tg of copolymers of various composition, studied by TMA and DSC, increase both with increasing content of ethyl α-cyanocinnamate.  相似文献   

15.
Glass transition temperatures have been measured as a function of chain length for amylose acetate, amylose propionate and cellulose carbanilate derivatives using DSC and torsional braid techniques. Critical chain lengths could be predicted if the anhydroglucose ring was treated as a rigid unit in the amylose chain but as a more flexible entity in cellulose. The dependence of Tg on M?1 was not predicted adequately by the Gibbs—DiMarzio theory over the complete molecular weight range. Branching was found to lower the glass transition temperature, but the effect was relatively small.  相似文献   

16.
Diglycidyl ether of bisfenol-A (DGEBA)/poly(vinyl acetate) (PVAc)/poly(4-vinyl phenol) brominated (PVPhBr) ternary blends cured with 4,4’-diaminodiphenylmethane (DDM) were investigated by differential scanning calorimetry (DSC), dynamic mechanical thermal analysis (DMTA) and scanning electron microscopy (SEM). Homogeneous (DGEBA+DDM)/PVPhBr networks with a unique T g are generated. Ternary blends (DGEBA+DDM)/PVAc/PVPhBr are initially miscible and phase separate upon curing arising two T gs that correspond to a PVAc-rich phase and to epoxy network phase. Increasing the PVPhBr content the T gof the PVAc phase move to higher temperatures as a consequence of the PVAc-PVPhBr interactions. Different morphologies are generated as a function of the blend composition.  相似文献   

17.
The experimental equilibrium phase diagram of a mixture of linear polystyrene of molecular weight Mw = 44,000 g/mol and 4‐cyano‐4′‐n‐octyl‐biphenyl (8CB) is established. The three transitions smectic A‐nematic, nematic‐isotropic, and isotropic‐isotropic are observed. The first two are observed both by optical microscopy and differential scanning calorimetry (DSC) while the isotropic‐isotropic transition could be seen only via optical microscopy. Two series of samples with the same compositions were independently prepared and yielded consistent results both by microscopy and DSC. Measurements of sample compositions with less than 50 weight % of 8CB were influenced by the vicinity of the glass transition temperature (Tg) of the polymer in the mixture. This quantity is also determined by DSC as a function of composition. A single Tg is observed, which decreases with composition of the LC. Other thermodynamic quantities such as the enthalpy variations of LC in the nematic‐isotropic transition and the fraction of LC contained in the droplets are also considered. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1841–1848, 1999  相似文献   

18.
Polyurethanes composed of 2,4-toluene diisocyanate (TDI), poly (butylene adipate) diols (PBA) of different molecular weights, and 4,4′-bis-(6-hydroxyhexoxy) biphenyl (BHHBP) were prepared by a two-step solution polymerization process. The polyurethanes were char-acterized by elemental analysis, NMR, and SEC. The thermal properties were investigated by DSC, DMA, and optical polarizing microscopy. Dependent on the molecular weight of the PBA, a shift in the glass transition temperature Tg of the polyurethanes has been observed by DSC and DMA. Polyurethanes based on poly (butylene adipate)s of Mn ~ 2000 exhibited a Tg nearly independent on the hard-segment content up to 50% LC hard segments, indicating the existence of mainly phase separated soft and hard segments. By shortening the PBA chain length up to 1,000 and further to 600, the Tg of the polyester soft-segment phase increases with growing hard-segment content, a consequence of enhanced interaction between the hard and soft segments. This tendency is observed to the greatest extent at polyurethanes with the shortest, polyester diol and can be interpreted as a partial miscibility or compatibility of hard and soft segments. Although in polyurethanes with PBA 2000 the mesophase can be proven at a hard-segment content of ~ 40%, its appearance in polyure-thances prepared with PBA 1000 or PBA 600 requires a hard-segment content > 60%. © 1995 John Wiley & Sons, Inc.  相似文献   

19.
Cellulose-based polycaprolactone (CAPCL) sheets were prepared from cellulose acetate (CA) and ϵ-caprolactone (CL). Thermal properties of the obtained CAPCL's were studied by differential scanning calorimetry (DSC), thermogravimetry (TG) and TG-Fourier transform infrared spectrometry (TG-FTIR). The glass transition temperatures (Tg 's) of CAPCL decreased with increasing CL/OH ratio, until CL/OH ratio reached 15 and then increased above that ratio. Melting of CAPCL was observed when CL/OH ratio was over 10. The thermal degradation temperatures (Td 's) of CAPCL increased from ca. 350 °C to 390 °C with increasing CL/OH ratio. The results obtained by TG-FTIR analysis of CAPCL showed that gases with OH, CH, C=O, C-O-C groups evolved by thermal degradation.  相似文献   

20.
Cellulose nanocrystals (CNC) prepared from eucalyptus cellulose CNCs were modified by the reaction with methyl adipoyl chloride, CNCm, or with a mixture of acetic and sulfuric acid, CNCa. The CNC were either dispersed at 0.1 wt% in the pure solvents ethyl acetate (EA), tetrahydrofuran (THF) and dimethylformamide (DMF) or in cellulose acetate butyrate (CAB) solutions prepared in these solvents at 0.9 wt%. The colloidal behavior of these dispersions was systematically investigated using a phase separation analyzer LUMiReader®. The mechanical properties and morphological features of the films resulting from the mixtures of CAB and CNC were determined by dynamic mechanical analysis, optical microscopy and atomic force microscopy, respectively. Regardless the functional group attached to the surface of CNC, the best colloidal stability was observed for dispersions prepared in CAB/DMF solution. Higher degree of substitution of modified CNCs favored the colloidal stability in EA and THF. Composite films prepared from CAB/DMF solutions were more homogeneous and presented better mechanical performance than those prepared in CAB/EA or CAB/THF. The mechanical performance of composites and neat CAB prepared from DMF was CAB/CNCs > CAB/CNCm > CAB/CNCa > CAB, indicating that the modification weakens the percolation process, which is mediated by H bonding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号