首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
制备了Al2O3负载Pt单金属催化剂和负载Pt-Cu双金属催化剂,比较了二者不同还原温度对其催化CCl4氢化脱氯反应性能的影响。 单金属Pt催化剂上主要生成CHCl3,而双金属Pt-Cu催化剂上产物随催化剂制备时的还原温度不同而异,当催化剂经400 ℃用H2还原后产物主要为CHCl3,而当催化剂经800 ℃用H2还原后产物主要为CCl2CCl2。 由于CCl4氢化反应是强放热反应,催化剂表面局部过热使得在反应中生成的C2等产物聚合结焦,覆盖了催化剂的活性中心,导致催化剂失活。 因此,通过加入甲醇作为稀释剂以带走部分反应热可提高催化剂的稳定性。 同时也降低了CHCl3的选择性,提高了CCl2CCl2的选择性。  相似文献   

2.
Homogeneous hydrolysis of aluminum by decomposition of urea in solution was achieved because the urea coordinates to the Al3+ in solution, forming [Al(H2O)5 (urea)]3+ and to a lesser extent [Al(H2O)4 (urea)2]3+. Upon hydrolysis more hydrolyzed monomeric species, [Al(H2O)5 (OH)]2+, [Al(H2O)4 (OH)2]+, [Al(H2O)4 (urea)(OH)]2+, and [Al(H2O)3 (urea)(OH)2]+, were formed, followed by trimeric species and the Al13 Keggin complex [AlO4Al12(OH)24(H2O)12]7+. The 27Al NMR spectra indicated the formation of other complexes in addition to the Al13 at the end of the hydrolysis reaction.  相似文献   

3.
Aluminum can undergo hydrolysis in aqueous solutions leading to the formation of soluble molecular clusters, including polynuclear species that range from 1 to 2 nm in diameter. While the behavior of aluminum has been extensively investigated, much less is known about the hydrolysis of more complex mixed-metal systems. This study focuses on the structural characteristics of heterometallic thorium-aluminum molecular species that may have important implications for the speciation of tetravalent actinides in radioactive waste streams and environmental systems. Two mixed metal (Th(4+)/Al(3+)) polynuclear species have been synthesized under ambient conditions and structurally characterized by single-crystal X-ray diffraction. [Th(2)Al(6)(OH)(14)(H(2)O)(12)(hedta)(2)](NO(3))(6)(H(2)O)(12) (ThAl1) crystallizes in space group P2(1)/c with unit cell parameters of a = 11.198(1) ?, b = 14.210(2) ?, c = 23.115(3) ?, and β = 96.375° and [Th(2)Al(8)(OH)(12)(H(2)O)(10)(hdpta)(4)](H(2)O)(21) (ThAl2) was modeled in P1? with a = 13.136(4) ?, b = 14.481(4) ?, c = 15.819(4) ?, α = 78.480(9)°, β = 65.666(8)°, γ = 78.272(8)°. Infrared spectra were collected on both compounds, confirming complexation of the ligand to the metal center, and thermogravimetric analysis indicated that the thermal degradation of these compounds resulted in the formation of an amorphous product at high temperatures. These mixed metal species have topological relationships to previously characterized aluminum-based polynuclear species and may provide insights into the adsorption of tetravalent actinides on colloidal or mineral surfaces.  相似文献   

4.
Infrared photodissociation spectra of Al(+)(CH(3)OH)(n) (n = 1-4) and Al(+)(CH(3)OH)(n)-Ar (n = 1-3) were measured in the OH stretching region, 3000-3800 cm(-1). For n = 1 and 2, sharp absorption bands were observed in the free OH stretching region, all of which were well reproduced by the spectra calculated for the solvated-type geometry with no hydrogen bond. For n = 3 and 4, there were broad vibrational bands in the energy region of hydrogen-bonded OH stretching vibrations, 3000-3500 cm(-1). Energies of possible isomers for the Al(+)(CH(3)OH)(3),4 ions with hydrogen bonds were calculated in order to assign these bands. It was found that the third and fourth methanol molecules form hydrogen bonds with methanol molecules in the first solvation shell, rather than a direct bonding with the Al(+) ion. For the Al(+)(CH(3)OH)(n) clusters with n = 1-4, we obtained no evidence of the insertion reaction, which occurs in Al(+)(H(2)O)(n). One possible explanation of the difference between these two systems is that the potential energy barriers between the solvated and inserted isomers in the Al(+)(CH(3)OH)(n) system is too high to form the inserted-type isomers.  相似文献   

5.
The molecular structure of aluminium and iron(III) complexes with 3-phenyl and 3-(4-pyridyl) (HL) substituted acetylacetonate ligands is appreciably distorted. For AlL3 and FeL3 this shows that the orientation of the side pyridyl-N donor atoms lone pairs is about 90 and 135 degrees which favours the assembly of heterobimetallic square patterns in Al(Fe)L3 complexes with metal ions. This was employed for the modular construction of semi-regular heterobimetallic networks, in which the pyridyldiketonate ligands bridge pairs of Fe(Al)/Cd(Co) metal ions and support the structure of 1D and 2D coordination polymers. The unprecedented 2D structure of [Cd[AlL3](CH3OH)[NO3]2].2CHCl3 and Cd[AlL3](CH3OH)Br2].2CHCl3 . 2CH3OH is based upon plane tiling by a set of heterobimetallic squares and octagons, while [Cd[FeL3]2(NO3)2].2H2O and [Co[AlL3]2Cl2].4CHCl3 . 2CH3OH are 1D polymers and exist as chains of heterobimetallic squares sharing opposite vertices.  相似文献   

6.
FTIR-smog chamber techniques were used to study the products and mechanisms of the Cl atom and OH radical initiated oxidation of trans-3,3,3-trifluoro-1-chloro-propene, t-CF(3)CH=CHCl, in 700 Torr of air or N(2)/O(2) diluent at 296 ± 2 K. The reactions of Cl atoms and OH radicals with t-CF(3)CH=CHCl occur via addition to the >C=C< double bond; chlorine atoms add 15 ± 5% at the terminal carbon and 85 ± 5% at the central carbon, OH radicals add approximately 40% at the terminal carbon and 60% at the central carbon. The major products in the Cl atom initiated oxidation of t-CF(3)CH=CHCl were CF(3)CHClCHO and CF(3)C(O)CHCl(2), minor products were CF(3)CHO, HCOCl and CF(3)COCl. The yields of CF(3)C(O)CHCl(2), CF(3)CHClCOCl and CF(3)COCl increased at the expense of CF(3)CHO, HCOCl and CF(3)CHClCHO as the O(2) partial pressure was increased over the range 10-700 Torr. Chemical activation plays a significant role in the fate of CF(3)CH(O)CHCl(2) and CF(3)CClHCHClO radicals. In addition to reaction with O(2) to yield CF(3)COCl and HO(2) the major competing fate of CF(3)CHClO is Cl elimination to give CF(3)CHO (not C-C bond scission as previously thought). As part of this study k(Cl + CF(3)C(O)CHCl(2)) = (2.3 ± 0.3) × 10(-14) and k(Cl + CF(3)CHClCHO) = (7.5 ± 2.0) × 10(-12) cm(3) molecule(-1) s(-1) were determined using relative rate techniques. Reaction with OH radicals is the major atmospheric sink for t-CF(3)CH=CHCl. Chlorine atom elimination giving the enol CF(3)CH=CHOH appears to be the sole atmospheric fate of the CF(3)CHCHClOH radicals. The yield of CF(3)COOH in the atmospheric oxidation of t-CF(3)CH=CHCl will be negligible (<2%). The results are discussed with respect to the atmospheric chemistry and environmental impact of t-CF(3)CH=CHCl.  相似文献   

7.
The gas phase reaction of Ni plasma and methanol clusters is studied by the laser ablation-molecular beam(LAMB) method. Five species of clustered complex ions Ni+(CH3OH)n,NiO+(CH3OH)n,H+(CH3OH)n,H3O+(CH3OH)n,CH3O-(CH3OH)n(n≤25)are observed. Interestingly,the species and sizes of the product clusters vary observably when the plasma acts on the different parts of the pulsed methanol molecular beam. When the laser ablated Ni plasma acts on the head and tail of the beam,the metal methanol complex clusters Ni+(CH3OH)n and the oxidation clusters NiO+(CH3OH)n(n=1-15)together with protonated methanol clusters H +(CH3OH)n are domain. While the plasma acts on the middle of the beam,however,Ni+(CH3OH)1-2 and H+(CH3OH)n along with the mixed methanol-water clusters H3O+(CH3OH)n(n=15-25)turn to be the main resulting clusters. By comparing the intensities and the cluster sizes of NiO+(CH3OH)n with Ni+(CH3OH)n,the formation of NiO+(CH3OH)n is contributed to the intracluster demethanation reaction of Ni+(CH3OH)n and evaporation of several methanol molecules. As the H3O+(CH3OH)n is observed only when the plasma acts on the high density part of the beam,and their intensities are only 0. 5% of the protonated methanol molecule,it is concluded that the species are partially due to the recombination of H+(CH3OH)n and water,which come from the plasma-molecule reaction.  相似文献   

8.
Aqueous trivalent aluminum (Al) ions and their oligomers play important roles in diverse areas, such as environmental sciences and medicine. The geometries of octahedral Al(H(2)O)(6)(3+) and tetrahedral Al(OH)(4)(-) species have been studied extensively. However, structures of intermediate hydrolysis products of the Al(III) ion, such as the penta-coordinated Al(OH)(2+) species, which exists at pH values ranging from 3.0 to 4.3, and their mode of formation have been poorly understood. Here, we present that a trigonal bipyramidal Al(OH)(H(2)O)(4)(2+) structure is formed in aqueous solution and how this monomeric species dimerizes to a dinuclear [(H(2)O)(4)Al(OH)(2)Al(H(2)O)(4)](4+) complex in aqueous solution. The Gibbs free energy change calculations indicate that the formation of the dinuclear complex is preferred over the existence of two single trigonal bipyramidal Al(OH)(H(2)O)(4)(2+) species in aqueous solution. This study captures the solution dynamics and proton transfer in the oligomerization reactions of penta-coordinated Al(OH)(2+) species in aqueous solution.  相似文献   

9.
RuO2 domains supported on SnO2, ZrO2, TiO2, Al2O3, and SiO2 catalyze the oxidative conversion of methanol to formaldehyde, methylformate, and dimethoxymethane with unprecedented rates and high combined selectivity (>99%) and yield at low temperatures (300-400 K). Supports influence turnover rates and the ability of RuO2 domains to undergo redox cycles required for oxidation turnovers. Oxidative dehydrogenation turnover rates and rates of stoichiometric reduction of RuO2 in H2 increased in parallel when RuO2 domains were dispersed on more reducible supports. These support effects, the kinetic effects of CH3OH and O2 on reaction rates, and the observed kinetic isotope effects with CH3OD and CD3OD reactants are consistent with a sequence of elementary steps involving kinetically relevant H-abstraction from adsorbed methoxide species using lattice oxygen atoms and with methoxide formation in quasi-equilibrated CH3OH dissociation on nearly stoichiometric RuO2 surfaces. Anaerobic transient experiments confirmed that CH3OH oxidation to HCHO requires lattice oxygen atoms and that selectivities are not influenced by the presence of O2. Residence time effects on selectivity indicate that secondary HCHO-CH3OH acetalization reactions lead to hemiacetal or methoxymethanol intermediates that convert to dimethoxymethane in reactions with CH3OH on support acid sites or dehydrogenate to form methylformate on RuO2 and support redox sites. These conclusions are consistent with the tendency of Al2O3 and SiO2 supports to favor dimethoxymethane formation, while SnO2, ZrO2, and TiO2 preferentially form methylformate. These support effects on secondary reactions were confirmed by measured CH3OH oxidation rates and selectivities on physical mixtures of supported RuO2 catalysts and pure supports. Ethanol also reacts on supported RuO2 domains to form predominately acetaldehyde and diethoxyethane at 300-400 K. The bifunctional nature of these reaction pathways and the remarkable ability of RuO2-based catalysts to oxidize CH3OH to HCHO at unprecedented low temperatures introduce significant opportunities for new routes to complex oxygenates, including some containing C-C bonds, using methanol or ethanol as intermediates derived from natural gas or biomass.  相似文献   

10.
The reaction of CH(3)C(O)CH(2)O(2) with HO(2) has been studied at 296 K and 700 Torr using long path FTIR spectroscopy, during photolysis of Cl(2)/acetone/methanol/air mixtures. The branching ratio for the reaction channel forming CH(3)C(O)CH(2)O, OH and O(2) () was investigated in experiments in which OH radicals were scavenged by addition of benzene to the system, with subsequent formation of phenol used as the primary diagnostic for OH radical formation. The observed prompt formation of phenol under conditions when CH(3)C(O)CH(2)O(2) reacts mainly with HO(2) indicates that this reaction proceeds partially by channel , which forms OH both directly and indirectly, by virtue of secondary generation of CH(3)C(O)O(2) (from CH(3)C(O)CH(2)O) and its reaction with HO(2) (). The secondary generation of OH radicals was confirmed by the observed formation of CH(3)C(O)OOH, a well-established product of the CH(3)C(O)O(2) + HO(2) reaction (via channel ). A number of delayed sources of OH also contribute to the observed phenol formation, such that full characterisation of the system required simulations using a detailed chemical mechanism. The dependence of the phenol and CH(3)C(O)OOH yields on the initial peroxy radical precursor reagent concentration ratio, [methanol](0)/[acetone](0), were well described by the mechanism, consistent with a small but significant fraction of the reaction of CH(3)C(O)CH(2)O(2) with HO(2) proceeding via channel . This allowed a branching ratio of k(3b)/k(3) = 0.15 +/- 0.08 to be determined. The results therefore provide strong indirect evidence for the participation of the radical-forming channel of the title reaction.  相似文献   

11.
Electronic structure methods were used to calculate the gas and aqueous phase reaction energies for reductive dechlorination (i.e., hydrogenolysis), reductive β-elimination, dehydrochlorination, and nucleophilic substitution by OH? of 1,2,3-trichloropropane. The thermochemical properties ΔH(f)°(298.15 K), S°(298.15 K, 1 bar), and ΔG(S)(298.15 K, 1 bar) were calculated by using ab initio electronic structure calculations, isodesmic reactions schemes, gas-phase entropy estimates, and continuum solvation models for 1,2,3-trichloropropane and several likely degradation products: CH3?CHCl?CH2Cl, CH2Cl?CH2?CH2Cl, C?H2?CHCl?CH2Cl, CH2Cl?C?H?CH2Cl, CH2═CCl?CH2Cl, cis-CHCl═CH?CH2Cl, trans-CHCl═CH?CH2Cl, CH2═CH?CH2Cl, CH2Cl?CHCl?CH2OH, CH2Cl?CHOH?CH2Cl, CH2═CCl?CH2OH, CH2═COH?CH2Cl, cis-CHOH═CH?CH2Cl, trans-CHOH═CH?CH2Cl, CH(═O)?CH2?CH2Cl, and CH3?C(═O)?CH2Cl. On the basis of these thermochemical estimates, together with a Fe(II)/Fe(III) chemical equilibrium model for natural reducing environments, all of the reactions studied were predicted to be very favorable in the standard state and under a wide range of pH conditions. The most favorable reaction was reductive β-elimination (ΔG(rxn)° ≈ ?32 kcal/mol), followed closely by reductive dechlorination (ΔG(rxn)° ≈ ?27 kcal/mol), dehydrochlorination (ΔG(rxn)° ≈ ?27 kcal/mol), and nucleophilic substitution by OH? (ΔG(rxn)° ≈ ?25 kcal/mol). For both reduction reactions studied, it was found that the first electron-transfer step, yielding the intermediate C?H2?CHCl?CH2Cl and the CH2Cl?C?H?CH2Cl species, was not favorable in the standard state (ΔG(rxn)° ≈ +15 kcal/mol) and was predicted to occur only at relatively high pH values. This result suggests that reduction by natural attenuation is unlikely.  相似文献   

12.
In this work, we report on the vacuum-ultraviolet (VUV) photoionization of small methanol and methanol-water clusters. Clusters of methanol with water are generated via co-expansion of the gas phase constituents in a continuous supersonic jet expansion of methanol and water seeded in Ar. The resulting clusters are investigated by single photon ionization with tunable vacuum-ultraviolet synchrotron radiation and mass analyzed using reflectron mass spectrometry. Protonated methanol clusters of the form (CH3OH)nH(+) (n = 1-12) dominate the mass spectrum below the ionization energy of the methanol monomer. With an increase in water concentration, small amounts of mixed clusters of the form (CH3OH)n(H2O)H(+) (n = 2-11) are detected. The only unprotonated species observed in this work are the methanol monomer and dimer. Appearance energies are obtained from the photoionization efficiency (PIE) curves for CH3OH(+), (CH3OH)2(+), (CH3OH)nH(+) (n = 1-9), and (CH3OH)n(H2O)H(+) (n = 2-9) as a function of photon energy. With an increase in the water content in the molecular beam, there is an enhancement of photoionization intensity for the methanol dimer and protonated methanol monomer at threshold. These results are compared and contrasted to previous experimental observations.  相似文献   

13.
Heterobinuclear oxometalate anions based upon [CrMoO7]2-, [CrWO7]2-, and [MoWO7]2- were generated and transferred to the gas phase by the electrospray process from acetonitrile solutions containing two of the salts (Bu4N)2[MO4] (M = Cr, Mo, W). Their reactivities were examined and compared with those of the related homobinuclear anions based upon [M2O7]2- (M = Cr, Mo, W). Particular emphasis was placed upon reactions relevant to gas-phase catalytic cycles described previously for oxidation of alcohols by [Mo2O6(OH)]- (Waters, T.; O'Hair, R. A. J.; Wedd, A. G. J. Am. Chem. Soc. 2003, 125, 3384-3396). The protonated anions [MM'O6(OH)]- each reacted with methanol with loss of water to form [MM'O6(OCH3)]- at a rate that was intermediate between those of [M2O6(OH)]- and [M'2O6(OH)]-. The butylated anions [MM'O6(OBu)]- were generated by collisional activation of the ion-pairs {Bu4N+ [MM'O7]2-}-. Collisional activation of [MM'O6(OBu)]- resulted in either the loss of butanal (redox reaction) or the loss of butene (elimination reaction), with the detailed nature of the observations depending on the nature of both M and M'. Selective 18O labeling indicated that the butoxo ligands of [CrMoO6(OBu)]- and [CrWO6(OBu)]- were located on molybdenum and tungsten, respectively. This structural insight allowed a more detailed comparison of reactivity with the homobinuclear species, and highlighted the importance of the neighboring metal center in these reactions.  相似文献   

14.
Neutral aqueous solutions of cerium ammonium nitrate obtained by dilution of their acetonitrile stock solution with imidazole buffer show high catalytic activity in the hydrolysis of bis(p-nitrophenyl) phosphate (BNPP) and better reproducibility than other similar systems, but suffer from low stability. The kinetics of catalytic hydrolysis is second-order in Ce(IV), independent of pH in the range 5-8 and tentatively involves the Ce2(OH)7+ species as the active form. Attempts to stabilize the active species by different types of added ligands failed, but the use of Ce(IV) complexes pre-synthesized in an organic solvent with potentially stabilizing ligands as precursors of active hydroxo species appeared to be more successful. Three new Ce(IV) complexes, [Ce(Phen)2O(NO3)2], [Ce(tris)O(NO3)(OH)] and [Ce(BTP)2(NO3)4].2H2O (BTP = bis-tris propane, 1,3-bis[tris(hydroxymethyl)methylamino]propane), were prepared by reacting cerium ammonium nitrate with the respective ligands in acetonitrile and were characterized by analytical and spectroscopic techniques. Aqueous solutions of these complexes undergo rapid hydrolysis producing nearly neutral polynuclear Ce(IV) oxo/hydroxo species with high catalytic activity in BNPP hydrolysis. Potentiometric titrations of the solutions obtained from the complex with BTP revealed the formation of Ce4(OH)15+ species at pH > 7, which are protonated affording Ce4(OH)14(2+) and then Ce4(OH)13(3+) on a decrease in pH from 7 to 5. The catalytic activity increases strongly on going to species with a higher positive charge. The reaction mechanism involves first- and second-order in catalyst paths as well as intermediate complex formation with the substrate for higher charged species.  相似文献   

15.
王瑞芬  孙忠  张胤 《应用化学》2009,26(7):878-880
以相图理论为指导,采用铝粉、水合氯化铝和水为原料,创造氯化铝不断水解的条件,通过调整反应温度、原料配比及溶液碱化度,经蒸发、结晶制成了铝盐水解聚合产物中的两种中间产物:水合氯化五聚铝AlCl3•4Al(OH)3•7.5H2O和水合氯化九聚铝2AlCl3•7Al(OH)3•18H2O,分别采用粉末XRD物相分析、化学分析和IR对其进行了表征.以化学分析为主要监测手段,对AlCl3•4Al(OH)3•7.5H2O和2AlCl3•7Al(OH)3•18H2O形态过程进行了研究,结果表明,温度对于产物的行成及性能有很大的影响,并且反应随温度的变化基本上是一个可逆的过程,同时,实验表明 75℃为AlCl3•4Al(OH)3•7.5H2O和2AlCl3•7Al(OH)3•18H2O析出的最佳温度,该温度下产物的产率较高且结晶状态良好.  相似文献   

16.
以去叔丁基硫杂杯[4]芳烃与Mn(II)为研究对象,通过改变体系溶剂分别得到了两个四核化合物Mn4(T4A)2 (1)和Mn4(T4A)2(DMF)2(2) (T4A = thiacalix[4]arene)。当反应溶剂为氯仿(CHCl3)和甲醇的混合溶剂时,形成的是以四核锰为结构单元的二维“笼目”(Kagomé)状超分子化合物1,而当反应溶剂为N,N-二甲基甲酰胺(DMF)和甲醇的混合溶剂时,得到的是格子状二维超分子互穿的三维结构化合物2。化合物1具有很大的溶剂占有空隙,是一个潜在的多孔材料,而化合物2是一个紧密堆积的拓展结构。  相似文献   

17.
Pd催化甲醇裂解制氢的反应机理   总被引:1,自引:0,他引:1  
基于密度泛函理论(DFT), 研究了甲醇在Pd(111)面上首先发生O—H键断裂的反应历程(CH3OH(s)→CH3O(s)+H(s)→CH2O(s)+2H(s)→CHO(s)+3H(s)→CO(s)+4H(s)). 优化了裂解过程中各反应物、中间体、过渡态和产物的几何构型, 获得了反应路径上各物种的吸附能及各基元反应的活化能数据. 另外, 对甲醇发生C—O键断裂生成CH3(s)和OH(s)的分解过程也进行了模拟计算. 计算结果表明, O—H键的断裂(活化能为103.1 kJ·mol-1)比C—O键的断裂(活化能为249.3 kJ·mol-1)更容易; 甲醇在Pd(111)面上裂解的主要反应历程是: 甲醇首先发生O—H键的断裂, 生成甲氧基中间体(CH3O(s)), 然后甲氧基中间体再逐步脱氢生成CO(s)和H(s). 甲醇发生O—H键断裂的活化能为103.1 kJ·mol-1, 甲氧基上脱氢的活化能为106.7 kJ·mol-1, 两者均有可能是整个裂解反应的速控步骤.  相似文献   

18.
19.
The CH3 + OH bimolecular reaction and the dissociation of methanol are studied theoretically at conditions relevant to combustion chemistry. Kinetics for the CH3 + OH barrierless association reaction and for the H + CH2OH and H + CH3O product channels are determined in the high-pressure limit using variable reaction coordinate transition state theory and multireference electronic structure calculations to evaluate the fragment interaction energies. The CH3 + OH --> 3CH2 + H2O abstraction reaction and the H2 + HCOH and H2 + H2CO product channels feature localized dynamical bottlenecks and are treated using variational transition state theory and QCISD(T) energies extrapolated to the complete basis set limit. The 1CH2 + H2O product channel has two dynamical regimes, featuring both an inner saddle point and an outer barrierless region, and it is shown that a microcanonical two-state model is necessary to properly describe the association rate for this reaction over a broad temperature range. Experimental channel energies for the methanol system are reevaluated using the Active Thermochemical Tables (ATcT) approach. Pressure dependent, phenomenological rate coefficients for the CH3 + OH bimolecular reaction and for methanol decomposition are determined via master equation simulations. The predicted results agree well with experimental results, including those from a companion high-temperature shock tube determination for the decomposition of methanol.  相似文献   

20.
As one of the representative superinsulating materials, the aluminum trioxypropyl Al(OC(3)H(7))(3) aerogel may be applied in launch vehicles and manned spacecrafts. In this study, the structures and hydrolysis mechanisms of the monomer, dimers, and trimers of Al(OC(3)H(7))(3) in neutral and alkaline environments were studied at the B3LYP/6-31G(d,p) level by using the CPCM solvation model to understand the fundamental chemistry of Al(OC(3)H(7))(3) hydrolysis and oligomerization. Our calculation shows that the first-order hydrolyses of the monomer and oligomers are energetically favorable in both alkaline and neutral solutions. In alkaline solutions, they are more apt to oligomerize than to hydrolyze due to high energy barriers and large binding energies in the formation of anionic species. For the oligomers under neutral condition (1) Al(OC(3)H(7))(3) is linked by four-membered Al-O rings with pentacoordinated bridging and tetracoordinated Al atoms, (2) the hydrolyzed propoxy groups will be expelled by solvent molecules, and (3) partly hydrolyzed species can condense to oligomers with bridging OH groups or O atoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号