首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
Currently, all standard force fields for biomolecular simulations use point charges to model intermolecular electrostatic interactions. This is a fast and simple approach but has deficiencies when the electrostatic potential (ESP) is compared to that from ab initio methods. Here, we show how atomic multipoles can be rigorously implemented into common biomolecular force fields. For this, a comprehensive set of local reference axis systems is introduced, which represents a universal solution for treating atom‐centered multipoles for all small organic molecules and proteins. Furthermore, we introduce a new method for fitting atomic multipole moments to the quantum mechanically derived ESP. This methods yields a 50–90% error reduction compared to both point charges fit to the ESP and multipoles directly calculated from the ab initio electron density. It is shown that it is necessary to directly fit the multipole moments of conformational ensembles to the ESP. Ignoring the conformational dependence or averaging over parameters from different conformations dramatically deteriorates the results obtained with atomic multipole moments, rendering multipoles worse than partial charges. © 2012 Wiley Periodicals, Inc.  相似文献   

2.
《Chemical physics letters》1999,291(1-2):125-129
An MP2/6-31+G1 calculation of the N-methylacetamide dimer shows that it has two minimum energy structures, both hydrogen bonded with peptide planes roughly perpendicular to each other. A complete molecular mechanics optimization of the dimer has been done, using a model for the intermolecular interactions consisting of charges, atomic dipoles, and van der Waals interactions and the methodology of our spectroscopically determined force field for the intramolecular interactions. The two structures are satisfactorily reproduced, as are their interaction energies, their dipole moments, and, from the point of view of our goal of a spectroscopically accurate force field, their six intermolecular normal mode frequencies.  相似文献   

3.
The electric field gradients (EFG) at the sites of the cations and the “central” atoms of the anions in the ionic crystals NaNO2, NaBF4, NaNO3 and Ba(NO3)2 are calculated by a method based on a combination of the semi-empirical INDO method for the charge distribution and the intramolecular EFG with a lattice summation in the framework of the extended multipole model. At some lattice sites the contribution of the induced dipole and quadrupole moments to the EFG is comparable with the contribution of the point charges. The charge distribution within the molecular ions is found by adjusting either the calculated asymmetry parameter η or the z-component of the EFG to the experimental value deduced from nuclear quadrupole coupling constants. These charge distributions are in good agreement with those gained from INDO calculations. The calculated and experimental quadrupole coupling constants of nuclei in anions and cations are compared.  相似文献   

4.
Accurate electrostatics necessitates the use of multipole moments centered on nuclei or extra point charges centered away from the nuclei. Here, we follow the former alternative and investigate the convergence behavior of atom‐atom electrostatic interactions in the pilot protein crambin. Amino acids are cut out from a Protein Data Bank structure of crambin, as single amino acids, di, or tripeptides, and are then capped with a peptide bond at each side. The atoms in the amino acids are defined through Quantum Chemical Topology (QCT) as finite volume electron density fragments. Atom‐atom electrostatic energies are computed by means of a multipole expansion with regular spherical harmonics, up to a total interaction rank of L = ?A+ ?B + 1 = 10. The minimum internuclear distance in the convergent region of all the 15 possible types of atom‐atom interactions in crambin that were calculated based on single amino acids are close to the values calculated from di and tripeptides. Values obtained at B3LYP/aug‐cc‐pVTZ and MP2/aug‐cc‐pVTZ levels are only slightly larger than those calculated at HF/6‐31G(d,p) level. This convergence behavior is transferable to the well‐known amyloid beta polypeptide Aβ1–42. Moreover, for a selected central atom, the influence of its neighbors on its multipole moments is investigated, and how far away this influence can be ignored is also determined. Finally, the convergence behavior of AMBER becomes closer to that of QCT with increasing internuclear distance. © 2013 Wiley Periodicals, Inc.  相似文献   

5.
6.
A method to derive the atomic multipole moments cumulatively up to quadrupole moments was developed. The multipole moments are obtained by least-square simulating the molecular electrostatic potentials. Only the components of the term of highest order in the atomic multipole expansion are optimized while the lower terms remain fixed. The calculations on HF, H2O and NH3 show that the cumulative method can give reasonable qualitative and fairly good quantitative results.  相似文献   

7.
The defects in atomic monopole models of molecular charge distribution have been analyzed for several model-blocked peptides and compared with accurate quantum chemical values. The results indicate that the angular characteristics of the molecular electrostatic potential around functional groups capable of forming hydrogen bonds can be considerably distorted within various models relying upon isotropic atomic charges only. It is shown that these defects can be corrected by augmenting the atomic point charge models by cumulative atomic multipole moments (CAMMs). Alternatively, sets of off-center atomic point charges could be automatically derived from respective multipoles, providing approximately equivalent corrections. For the first time, correlated atomic multipoles have been calculated for N-acetyl, N'-methylamide-blocked derivatives of glycine, alanine, cysteine, threonine, leucine, lysine, and serine using the MP2 method. The role of the correlation effects in the peptide molecular charge distribution are discussed.  相似文献   

8.
The ability of force fields to reproduce relative conformational energies for seven molecules is probed. The correlation against LMP2/cc‐pVTZ results for standard force field employing fixed partial charges deteriorates as the molecules become more polar. Inclusion of multipole moments and intramolecular polarization can improve the correlation, and both contributions are of similar importance. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   

9.
A new induced dipole polarization model based on interacting Gaussian charge densities is presented. In contrast to the original induced point dipole model, the Gaussian polarization model is capable of finite interactions at short distances. Aspects of convergence related to the Gaussian model will be explored. The Gaussian polarization model is compared with the damped Thole-induced dipole model and the point dipole model. It will be shown that the Gaussian polarization model performs slightly better than the Thole model in terms of fitting to molecular polarizability tensors. An advantage of the model based on Gaussian charge distribution is that it can be easily generalized to other multipole moments and provide effective damping for both permanent electrostatic and polarization models. Finally, a method of parameterizing polarizabilities is presented. This method is based on probing a molecule with point charges and fitting polarizabilities to electrostatic potential. In contrast to the generic atom type polarizabilities fit to molecular polarizability tensors, probed polarizabilities are significantly more accurate in terms of reproducing molecular polarizability tensors and electrostatic potential, while retaining conformational transferability.  相似文献   

10.
The physical interpretation of intermolecular interactions is usually based on the well-known multipole expansion of the inverse of the interparticle distance. The interaction energy is then interpreted as a sum of terms arising from the interaction of various multipole moments of both systems. It is supposed that the interaction energy calculated via the truncated multipole expansion generally depends on the choice of local coordinate systems through the coordinate dependence of the multipole moments. In this paper we prove that each term of the multipole expansion given in the form ∑k = 1 Ck/Rk is invariant with respect to identical translations and arbitrary rotations of the local coordinate systems. The invariant form of the convergence criterion of the multipole expansion is given and discussed.  相似文献   

11.
The problem of approximating three-dimensional spatial distributions of quantum-mechanical electrostatic potentials of molecules by analytic potentials on the basis of atomic charges, real dipoles, and atomic multipoles up to quadrupoles inclusive was considered. Real dipole potentials are created by pairs of point charges of opposite signs, and the search for their arrangement in the volume of a molecule is part of the approximation problem. A FitMEP program was developed for the optimization of the parameters of models of the types specified taking into account molecular symmetry. It was shown for the example of several molecules (HF, CO, H2O, NH3, CH4, formaldehyde, methanol, formamide, ethane, cyclopropane, cyclobutane, cyclohexane, tetrahedrane, cubane, adamantane, ethylene, and benzene) that the real dipole and atomic multipole models gave errors in approximated quantum-mechanical electrostatic potential values smaller by one or two orders of magnitude compared with the atomic charge model. The atomic charge model was shown to be virtually inoperative as applied to saturated hydrocarbons. Real dipole models were slightly inferior to atomic multipole models in quality but had all the advantages of the potential of point charges as concerned simplicity and compactness, and their use in potential energy calculations did not require changes in the existing program codes.  相似文献   

12.
This work describes a new and low-scaling implementation of the polarizable continuum model (PCM) for computing the self-consistent solvent reaction field. The PCM approach is both general and accurate. It is applicable in the framework of both quantum and classical calculations, and also to hybrid quantum/classical methods. In order to further extend the range of applicability of PCM we addressed the problem of its computational cost. The generation of the finite-elements molecular cavity has been reviewed and reimplemented, achieving linear scaling for systems containing up to 500 atoms. Linear scaling behavior has been achieved also for the iterative solution of the PCM equations, by exploiting the fast multipole method (FMM) for computing electrostatic interactions. Numerical results for large (both linear and globular) chemical systems are discussed.  相似文献   

13.
14.
In order to estimate atomic multipole moments (AMMs) and charges in the model of amorphous SiO2 a hybrid B3LYP functional with 30% of the Hartree-Fock Hamiltonian in the exchange part with the 88-31G*(Si)/8-411G*(O) basis set and the CRYSTAL06 package are used. A 192-atomic unit cell of amorphous SiO2 is chosen as a model, the calculations with which agree well with the experimental static factor of neutron scattering. The second optimized model of amorphous SiO2 (a-SiO2) with a smaller number of defects is prepared with the use of the VASP package and full optimization of the initial a-SiO2 model. For both models the atomic charges and AMMs are calculated (up to the fourth order included) and their approximation is performed. The approximation quality is compared for these models and with a model for crystalline systems whose AMMs were previously calculated. The conclusions are drawn about the applicability of charge and AMM estimates within the approaches such as the embedded cluster.  相似文献   

15.
We evaluate embedding potentials, obtained via various methods, used for polarizable embedding computations of excitation energies of para‐nitroaniline in water and organic solvents as well as of the green fluorescent protein. We found that isotropic polarizabilities derived from DFTD3 dispersion coefficients correlate well with those obtained via the LoProp method. We show that these polarizabilities in conjunction with appropriately derived point charges are in good agreement with calculations employing static multipole moments up to quadrupoles and anisotropic polarizabilities for both computed systems. The (partial) use of these easily‐accessible parameters drastically reduces the computational effort to obtain accurate embedding potentials especially for proteins. © 2016 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc.  相似文献   

16.
The experimental electron density distribution (EDD) of 1-methyluracil (1-MUR) was obtained by single crystal X-ray diffraction (XRD) experiments at 23 K. Four different structural models fitting an extensive set of XRD data to a resolution of (sinθ/λ)max = 1.143 Å−1 are compared. Two of the models include anharmonic temperature factors, whose inclusion is supported by the Hamilton test at a 99.95% level of confidence. Positive Fourier residuals up to 0.5 eÅ–3 in magnitude were found close to the methyl group and in the region of hydrogen bonds. Residual density analysis (RDA) and molecular dynamics simulations in the solid-state demonstrate that these residuals can be likely attributed to unresolved disorder, possibly dynamical and long–range in nature. Atomic volumes and charges, molecular moments up to hexadecapoles, as well as maps of the molecular electrostatic potential were obtained from distributed multipole analysis of the EDD. The derived electrostatic properties neither depend on the details of the multipole model, nor are significantly affected by the explicit inclusion of anharmonicity in the least–squares model. The distribution of atomic charges in 1-MUR is not affected by the crystal environment in a significant way. The quality of experimental findings is discussed in light of in-crystal and gas-phase quantum simulations.  相似文献   

17.
18.
19.
We have implemented analytical second-moment gradients for Hartree-Fock and multiconfigurational self-consistent-field wave functions. The code is used to calculate atomic dipole moments based on the generalized atomic polar tensor (GAPT) formalism [Phys. Rev. Lett. 62, 1469 (1989)], and the proposal of Dinur and Hagler (DH) for the calculation of atomic multipoles [J. Chem. Phys. 91, 2949 (1989)]. Both approaches display smooth basis-set convergence toward a well-defined basis-set limit and give reasonable electron correlation effects on the calculated atomic properties. However, the atomic charges and atomic dipole moments obtained from the GAPT partitioning scheme are unable to provide even qualitatively meaningful molecular quadrupole moments for some molecules, and thus the atomic multipole moments calculated in this scheme cannot be considered well suited for analyzing the electron density in molecules and for calculating intermolecular interaction energies. In contrast, the DH approach gives atomic charges and dipole moments that by definition exactly reproduce the molecular quadrupole moments. The approach of DH is, however, restricted to planar molecules and thus suffers from not being applicable to molecules of arbitrary shape. Both the GAPT and DH approaches give rather poor results for octupole and hexadecapole moments, indicating that at least atomic quadrupole moments are required for an accurate representation of the molecular charge distribution in terms of atomic electric moments.  相似文献   

20.
The Fourier transform Coulomb (FTC) method has been shown to be effective for the fast and accurate calculation of long-range Coulomb interactions between diffuse (low-energy cutoff) densities in quantum mechanical (QM) systems. In this work, we split the potential of a compact (high-energy cutoff) density into short-range and long-range components, similarly to how point charges are handled in the Ewald mesh methods in molecular mechanics simulations. With this linear scaling QM Ewald mesh method, the long-range potential of compact densities can be represented on the same grid as the diffuse densities that are treated by the FTC method. The new method is accurate and significantly reduces the amount of computational time on short-range interactions, especially when it is compared to the continuous fast multipole method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号