首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A test set of 65 hydrocarbons was examined to elucidate theoretically their thermodynamic properties by performing the density-functional theory (DFT) and ab initio calculations. All the calculated data were modified using a three-parameter calibration equation and the least-squares approach, to determine accurately enthalpies of formation (DeltaH(f)), entropies (S), and heat capacities (C(p)). Calculation results demonstrated that the atomization energies of all compounds exhibited an average absolute relative error ranging between 0.11- 0.13%, and an DeltaH(f) of formation with a mean absolute absolute error (M.|A.E.|) ranging from only 5.7-6.8 kJ/mol (1.3-1.6 kcal/mol) (i.e., those results correlated with those of Dr. Herndon's 1.1 kcal/mol). Additionally, the entropy ranged from 3.5-4.2 J/mol K (0.8-1.0 cal/mol K) M.|A.E.|; a heat capacity between 2.3-2.9 J/mol K (0.5-0.7 cal/mol K) M.|A.E.| was obtained as well.  相似文献   

2.
The mechanism for the deamination reaction of cytosine with H(2)O and OH(-) to produce uracil was investigated using ab initio calculations. Optimized geometries of reactants, transition states, intermediates, and products were determined at RHF/6-31G(d), MP2/6-31G(d), and B3LYP/6-31G(d) levels and for anions at the B3LYP/6-31+G(d) level. Single-point energies were also determined at B3LYP/6-31+G(d), MP2/GTMP2Large, and G3MP2 levels of theory. Thermodynamic properties (DeltaE, DeltaH, and DeltaG), activation energies, enthalpies, and free energies of activation were calculated for each reaction pathway that was investigated. Intrinsic reaction coordinate analysis was performed to characterize the transition states on the potential energy surface. Two pathways for deamination with H(2)O were found, a five-step mechanism (pathway A) and a two-step mechanism (pathway B). The activation energy for the rate-determining steps, the formation of the tetrahedral intermediate for pathway A and the formation of the uracil tautomer for pathway B, are 221.3 and 260.3 kJ/mol, respectively, at the G3MP2 level of theory. The deamination reaction by either pathway is therefore unlikely because of the high barriers that are involved. Two pathways for deamination with OH(-) were also found, and both of them are five-step mechanisms. Pathways C and D produce an initial tetrahedral intermediate by adding H(2)O to deprotonated cytosine which then undergoes three conformational changes. The final intermediate dissociates to product via a 1-3 proton shift. Deamination with OH(-), through pathway C, resulted in the lowest activation energy, 148.0 kJ/mol, at the G3MP2 level of theory.  相似文献   

3.
The enantioselective lithiation of N-Boc-pyrrolidine using sec-butyllithium and isopropyllithium in the presence of sparteine-like diamines has been studied experimentally and computationally at various theoretical levels through to B3P86/6-31G*. Of the (-)-cytisine-derived diamines (N-Me, N-Et, N-(n)Bu, N-CH(2)(t)Bu, N-(i)Pr) studied experimentally, the highest enantioselectivity (er 95:5) was observed with the least sterically hindered N-Me-substituted diamine, leading to preferential removal of the pro-R proton i.e., opposite enantioselectivity to (-)-sparteine. The experimental result with the N-Me-substituted diamine correlated well with the computational results: at the B3P86/6-31G* level, the sense of induction was correctly predicted; the lowest energy complex of isopropyllithium/diamine/N-Boc-pyrrolidine also had the lowest activation energy (DeltaH++ = 11.1 kcal/mol, DeltaG++= 11.5 kcal/mol) for proton transfer. The computational results with the N-(i)Pr-substituted diamine identified a transition state for proton transfer with activation energies of DeltaH++= 11.7 kcal/mol and DeltaG++= 11.8 kcal/mol (at the B3P86/6-31G* level). Although comparable to (-)-sparteine and the N-Me-substituted diamine, these DeltaH++ and DeltaG++ values are at odds with the experimental observation that use of the N-(i)Pr-substituted diamine gave no product. It is suggested that steric crowding inhibits formation of the prelithiation complex rather than increasing the activation enthalpy for proton transfer in the transition state. Three other ligands (N-H and O-substituted as well as a five-membered ring analogue) were studied solely using computational methods, and the results predict that the observed enantioselectivity would be modest at best.  相似文献   

4.
5.
Cyanide-catalyzed aldimine coupling was employed to synthesize compounds with 1,2-ene-diamine and alpha-imine-amine structural motifs: 1,2,N,N'-tetraphenyletheylene-1,2-diamine (13) and (+/-)-2,3-di-(2-hydroxyphenyl)-1,2-dihydroquinoxaline (17), respectively. Single-crystal X-ray diffraction provided solid-state structures and density functional theory calculations were used to probe isomeric preferences within this and the related hydroxy-ketone/ene-diol system. The ene-diamine and imine-amine core structures were calculated (B3LYP/6-311++G(d,p)) to be essentially identical in energy (DeltaG = 0.2 kcal/mol in favor of the imine-amine, within the error of the calculation). However, additional effects-such as pi conjugation-in 13 render an ene-diamine structure that is slightly more stable than the imine-amine tautomer (14) (DeltaG = 0.2-0.7 kcal/mol, within the error of the calculation). In contrast, the intramolecular hydrogen bonding present in 17 significantly favors the imine-amine isomer over the ene-diamine tautomer (18) (DeltaG = 7.2-8.9 kcal/mol). For both 13 and 17, the optimized calculated structures (B3LYP/6-31+G(d')) are identical to those observed by single-crystal X-ray diffraction.  相似文献   

6.
The geometric properties, ionization potentials, heats of formation, incremental binding energies, and protonation energies for up to 75 magnesium-containing compounds have been studied using the self-consistent-charge density-functional tight-binding method (SCC-DFTB), the complete-basis set (CBS-QB3) method, traditional B3LYP density-functional theory, and a number of modern semiempirical methods such as Austin Model 1 (AM1), modified neglect of diatomic overlap without and with inclusion of d functions (MNDO, MNDO/d), and the Parametric Method 3 (PM3) and its modification (PM5). The test set contains some widely varying chemical motifs including ionic or covalent, closed-shell or radical compounds, and many biologically relevant complexes. Geometric data are compared to experiment, if available, and otherwise to previous high-level ab initio calculations or the present B3LYP results. SCC-DFTB is found to predict bond lengths to high accuracy, with the root-mean-square (RMS) error being less than half that found for the other semiempirical methods. However, SCC-DFTB performs very poorly for absolute heats of formation, giving an RMS error of 29 kcal mol(-1), but for this property B3LYP and the other semiempirical methods also yield poor but useful results with errors of 12-22 kcal mol(-1). Nevertheless, SCC-DFTB does provide useful results for biologically relevant chemical-process energies such as protonation energies (RMS error 10 kcal mol(-1), with the range 6-19 kcal mol(-1) found for the other semiempirical methods) and ligation energies (RMS error 9 kcal mol(-1), less than the errors of 12-23 kcal mol(-1) found for the other semiempirical methods). SCC-DFTB is shown to provide a computationally expedient means of calculating properties of magnesium compounds, providing results with at most double the inaccuracy of the high-quality but dramatically more-expensive B3LYP method.  相似文献   

7.
The structures and relative energies of the conformers of phenylcyclohexane, and 1-methyl-1-phenylcyclohexane have been calculated at theoretical levels including HF/6-31G, B3LYP/6-311G, MP2/6-311G, MP2/6-311(2df,p), QCISD/6-311G, and QCISD/6-311G(2df,p). The latter gives conformational enthalpy (DeltaH degrees ), entropy (DeltaS degrees ), and free energy (DeltaG degrees ) values for phenylcyclohexane that are in excellent agreement with the experimental data. The calculations for 1-methyl-1-phenylcyclohexane find a free energy difference of 1.0 kcal/mol at -100 degrees C, favoring the conformation having an axial phenyl group, that is in only modest agreement with the experimental value of 0.32 +/- 0.04 kcal/mol. The origin of the phenyl rotational profiles for the conformers of phenylcyclohexane and 1-methyl-1-phenylcyclohexane is discussed.  相似文献   

8.
Calculation methods, based on hybrid density-functional theory with the basis sets of B3LYP/ 6-311+G (2d, p)//B3LYP/6-31G(d, p)and B3LYP/6-31+G(d)//B3LYP/6-31G(d, p), were applied to determine the thermodynamic characteristics of various energetic nitro compounds. A parametric modification equation and the least-squares approach were used to identify 21 of the energetic research compounds. The atomization energies of these 21 compounds have an average relative error of 0.21–0.25% of the experimental values. The enthalpy (H f) and the Gibbs energy (G f) of formation have mean absolute errors of 10.8–11.4 kJ/ mol (2.6–2.7 kcal/mol) and 10.0–10.3 kJ/mol (2.4 kcal/ mol), respectively. The enthalpy and the Gibbs energy of formation obtained exceed those in the literature obtained by semiempirical calculations. The calibrated least-squares parameters and parametric equations were used to predict H f and G f for the five newly developed energetic nitro compounds for further applications.Acknowledgements. The authors would like to thank the National Science Council of the Republic of China for financial support of this work under grant no. NSC-91-2113-M-014-003. The National Center for High-Performance Computing providing the computation facility is also acknowledged.  相似文献   

9.
The gas-phase acidity and proton affinity of thymine, cytosine, and 1-methyl cytosine have been examined using both theoretical (B3LYP/6-31+G*) and experimental (bracketing, Cooks kinetic) methods. This paper represents a comprehensive examination of multiple acidic sites of thymine and cytosine and of the acidity and proton affinity of thymine, cytosine, and 1-methyl cytosine. Thymine exists as the most stable "canonical" tautomer in the gas phase, with a DeltaH(acid) of 335 +/- 4 kcal mol(-1) (DeltaG(acid) = 328 +/- 4 kcal mol(-1)) for the more acidic N1-H. The acidity of the less acidic N3-H site has not, heretofore, been measured; we bracket a DeltaH(acid) value of 346 +/- 3 kcal mol(-1) (DeltaG(acid) = 339 +/- 3 kcal mol(-1)). The proton affinity (PA = DeltaH) of thymine is measured to be 211 +/- 3 kcal mol(-1) (GB = DeltaG = 203 +/- 3 kcal mol(-1)). Cytosine is known to have several stable tautomers in the gas phase in contrast to in solution, where the canonical tautomer predominates. Using bracketing methods in an FTMS, we measure a DeltaH(acid) for the more acidic site of 342 +/- 3 kcal mol(-1) (DeltaG(acid) = 335 +/- 3 kcal mol(-1)). The DeltaH(acid) of the less acidic site, previously unknown, is 352 +/- 4 kcal mol(-1) (345 +/- 4 kcal mol(-1)). The proton affinity is 228 +/- 3 kcal mol(-1) (GB = 220 +/- 3 kcal mol(-1)). Comparison of these values to calculations indicates that we most likely have a mixture of the canonical tautomer and two enol tautomers and possibly an imine tautomer under our conditions in the gas phase. We also measure the acidity and proton affinity of cytosine using the extended Cooks kinetic method. We form the proton-bound dimers via electrospray of an aqueous solution, which favors cytosine in the canonical form. The acidity of cytosine using this method is DeltaH(acid) = 343 +/- 3 kcal mol(-1), PA = 227 +/- 3 kcal mol(-1). We also examined 1-methyl cytosine, which has fewer accessible tautomers than cytosine. We measure a DeltaH(acid) of 349 +/- 3 kcal mol(-1) (DeltaG(acid) = 342 +/- 3 kcal mol(-1)) and a PA of 230 +/- 3 kcal mol(-1) (GB = 223 +/- 3 kcal mol(-1)). Our ultimate goal is to understand the intrinsic reactivity of nucleobases; gas-phase acidic and basic properties are of interest for chemical reasons and also possibly for biological purposes because biological media can be quite nonpolar.  相似文献   

10.
The new semiempirical methods, PDDG/PM3 and PDDG/MNDO, have been parameterized for halogens. For comparison, the original MNDO and PM3 were also reoptimized for the halogens using the same training set; these modified methods are referred to as MNDO' and PM3'. For 442 halogen-containing molecules, the smallest mean absolute error (MAE) in heats of formation is obtained with PDDG/PM3 (5.6 kcal/mol), followed by PM3' (6.1 kcal/mol), PDDG/MNDO (6.6 kcal/mol), PM3 (8.1 kcal/mol), MNDO' (8.5 kcal/mol), AM1 (11.1 kcal/mol), and MNDO (14.0 kcal/mol). For normal-valent halogen-containing molecules, the PDDG methods also provide improved heats of formation over MNDO/d. Hypervalent compounds were not included in the training set and improvements over the standard NDDO methods with sp basis sets were not obtained. For small haloalkanes, the PDDG methods yield more accurate heats of formation than are obtained from density functional theory (DFT) with the B3LYP and B3PW91 functionals using large basis sets. PDDG/PM3 and PM3' also give improved binding energies over the standard NDDO methods for complexes involving halide anions, and they are competitive with B3LYP/6-311++G(d,p) results including thermal corrections. Among the semiempirical methods studied, PDDG/PM3 also generates the best agreement with high-level ab initio G2 and CCSD(T) intrinsic activation energies for S(N)2 reactions involving methyl halides and halide anions. Finally, the MAEs in ionization potentials, dipole moments, and molecular geometries show that the parameter sets for the PDDG and reoptimized NDDO methods reduce the MAEs in heats of formation without compromising the other important QM observables.  相似文献   

11.
Several economical methods for geometry optimization, that should be applicable to larger molecules, have been evaluated for 19 phosphorus acid derivatives. MP2/cc-pVDZ geometry optimizations are used as reference points and the geometries obtained from the other methods are evaluated with respect to deviations in bond lengths and angles, from the reference geometries. The geometry optimization methods are also compared to the much used B3LYP/6-31G(d) method. Single point energies obtained by subsequent EDF1/6-31+G(d) or B3LYP/6-31+G(d,p) calculations on the respective equilibrium geometries are also reported relative to the energies obtained from the reference geometries. The geometries from HF/MIDI! optimizations were closer to those of the references than the geometries of the HF/3-21G(d), HF/6-31G(d), and B3LYP/MIDI! optimizations. The EDF1/6-31+G(d) or B3LYP/6-31+G(d,p) single point energies obtained from the HF/3-21G(d), HF/6-31G(d), and B3LYP/MIDI! geometries gave a mean absolute deviation (MAD) from that of the reference geometries of 1.4-3.9 kcal mol m 1 . The HF/MIDI! geometries, however, gave EDF1/6-31+G(d) and B3LYP/6-31+G(d,p) energies with a MAD of only about 0.5 and 0.55 kcal mol m 1 respectively from the energies obtained with the reference geometries. Thus, use of HF/MIDI! for geometry optimization of phosphorus acids is a method that gives geometries of near-MP2 quality, resulting in a fair accuracy of energies in subsequent single point calculations, at a much lower computational cost other methods that give similar accuracies.  相似文献   

12.
The use of B3LYP/6–31G* zero-point energies and geometries in the calculation of enthalpies of formation has been investigated for the enlarged G2 test set of 148 molecules [J. Chem. Phys. 106 (1997) 1063]. A scale factor of 0.96 for the B3LYP zero-point energies gives an average absolute deviation nearly the same as scaled HF/6–31G* zero-point energies for G2, G2(MP2), and B3LYP/6–311 + G(3df,2p) enthalpies. A scale factor of 0.98, which has been recommended in some studies, increases the average absolute deviation by about 0.2 kcal/mol. Geometries from B3LYP/6–31G* are found to do as well as MP2/6–31G* geometries in the calculation of the enthalpies of formation.  相似文献   

13.
The heat of hydrogenation of phenylcyclobutadiene (DeltaH degrees (hyd) = 57.4 +/- 4.9 kcal mol(-1)) was determined via a thermodynamic cycle by carrying out gas-phase measurements on 1-phenylcyclobuten-3-yl cation. This leads to an antiaromatic destabilization energy of 27 +/- 5 kcal mol(-1), a difference of 9.6 +/- 4.9 kcal mol(-1) for the first and second C-H bond dissociation energies of 1-phenylcyclobutene, and an estimate of 96 +/- 5 kcal mol(-1) for the heat of formation of cyclobutadiene. These results are compared to G3, G3(MP2), and B3LYP computations and represent the first experimental measurements of the energy of a monocyclic cyclobutadiene.  相似文献   

14.
A systematic study of the binding motifs of Cu(II) and Cu(I) to a methionine model peptide, namely, N-formylmethioninamide 1, has been carried out by quantum chemical computations. Geometries of the coordination modes obtained at the B3LYP/6-31G(d) level of theory are discussed in the context of copper coordination by the peptide backbone and the S atom of a methionine residue in peptides with special emphasis on Met35 of the amyloid-beta peptide (Abeta) of Alzheimer's disease. The relative binding free energies in the gas phase, DeltaG(g), are calculated at the B3LYP/6-311+G(2df,2p)//B3LYP/6-31G(d) level of theory, and the solvation affects are included by means of the COSMO model to obtain the relative binding energies in solution, DeltaG(aq). A free energy of binding, DeltaG(aq) = -19.4 kJ mol(-1), relative to aqueous Cu(II) and the free peptide is found for the most stable Cu(II)/Met complex, 12. The most stable Cu(I)/Met complex, 23, is bound by -15.6 kJ mol(-1) relative to the separated species. The reduction potential relative to the standard hydrogen electrode is estimated to be E degrees (12/23) = 0.41 V. On the basis of these results, the participation of Met35 as a low affinity binding site of Cu(II) in Abeta, and its role in the redox chemistry underlying Alzheimer's disease is discussed.  相似文献   

15.
The conformational free energies for some 2-substituted butanes where X = F, Cl, CN, and CCH were calculated using G3-B3, CBS-QB3, and CCSD(T)/6-311++G(2d,p) as well as other theoretical levels. The above methods gave consistent results with free energies relative to the trans conformers as follows: X = CCH, g+ = 0.77 +/- 0.05 kcal/mol. g- = 0.88 +/- 0.05 kcal/mol; X = CN, g+ = 0.85 +/- 0.05 kcal/mol, g- = 0.75 +/- 0.05 kcal/mol; X = Cl, g+ = 0.70 +/- 0.05 kcal/ml, g- = 0.80 +/- 0.05 kcal/mol; and X = F, g+ = 0.53 +/- 0.05 kcal/mol, g- = 0.83 +/- 0.05 kcal/mol. The conformational free energies also were estimated using the observed liquid phase IR spectra and intensities calculated using B3LYP/6-311++G** and MP2/6-311++G**. The rotational free energy profiles for all of the compounds were estimated at the G3-B3 level.  相似文献   

16.
The bond dissociation energies for a series of silyl peroxides have been calculated at the G2 and CBS-Q levels of theory. A comparison is made with the O-O BDE of the corresponding dialkyl peroxides, and the effect of the O-O bond strength on the activation barrier for oxygen atom transfer is discussed. The O-O bond dissociation enthalpies (DeltaH(298)) for bis (trimethylsilyl) peroxide (1) and trimethylsilyl hydroperoxide (2) are 54.8 and 53.1 kcal/mol, respectively at the G2 (MP2) and CBS-Q levels of theory. The O-O bond dissociation energies computed at G2 and G2(MP2) levels for bis(tert-butyl) peroxide and tert-butyl hydroperoxide are 45.2 and 48.3 kcal/mol, respectively. The barrier height for 1,2-methyl migration from silicon to oxygen in trimethylsilyl hydroperoxide is 47.9 kcal/mol (MP4//MP2/6-31G). The activation energy for the oxidation of trimethylamine to its N-oxide by bis(trimethylsilyl) peroxide is 28.2 kcal/mol (B3LYP/6-311+G(3df,2p)// B3LYP/6-31G(d)). 1,2-Silicon bridging in the transition state for oxygen atom transfer to a nucleophilic amine results in a significant reduction in the barrier height. The barrier for the epoxidation of E-2-butene with bis(dimethyl(trifluoromethyl))silyl peroxide is 25.8 kcal/mol; a reduction of 7.5 kcal/mol relative to epoxidation with 1. The activation energy calculated for the epoxidation of E-2-butene with F(3)SiOOSiF(3) is reduced to only 2.2 kcal/mol reflecting the inductive effect of the electronegative fluorine atoms.  相似文献   

17.
The molecular structure of 1-methyl-1-silacyclohexane 3 has been determined by gas electron diffraction (GED). The conformational preference of the methyl group was studied experimentally in the gas phase (GED) and in solution (low-temperature (13)C NMR) and by quantum chemical calculations (HF, MP2, and B3LYP with 6-31G basis sets and mPW1PW91/6-311G(2df,p)). Both experimental methods result in a preference of the equatorial position of the methyl group, 68(7)% in the gas phase at 298 K and 74(1)% in solution at 110 K. The calculations predict 68-73% equatorial conformer at room temperature. From coalescence temperatures, Gibbs free energies of activation for ring inversion DeltaG++ (eq --> ax) = 5.81(18) and DeltaG++ (ax --> eq) = 5.56(18) kcal mol(-1) were derived. The calculated values for DeltaG++ (eq --> ax) are 5.92 (B3LYP) and 5.84 kcal mol(-1) (mPW1PW91).  相似文献   

18.
The G3/99 test set [L. A. Curtiss, K. Raghavachari, P. C. Redfern, and J. A. Pople, J. Chem. Phys. 112, 7374 (2000)] of thermochemical data for validation of quantum chemical methods is expanded to include 78 additional energies including 14 enthalpies of formation of the first- and second-row nonhydrogen molecules, 58 energies of molecules containing the third-row elements K, Ca, and Ga-Kr, and 6 hydrogen-bonded complexes. The criterion used for selecting the additional systems is the same as before, i.e., experimental uncertainties less than +/- 1 kcal/mol. This new set, referred to as the G3/05 test set, has a total of 454 energies. The G3 and G3X theories are found to have mean absolute deviations of 1.13 and 1.01 kcal/mol, respectively, when applied to the G3/05 test set. Both methods have larger errors for the nonhydrogen subset of 79 species for which they have mean absolute deviations of 2.10 and 1.64 kcal/mol, respectively. On all of the other types of energies the G3 and G3X methods are very reliable. The G3/05 test set is also used to assess density-functional methods including a series of new functionals. The most accurate functional for the G3/05 test set is B98 with a mean absolute deviation of 3.33 kcal/mol, compared to 4.14 kcal/mol for B3LYP. The latter functional has especially large errors for larger molecules with a mean absolute deviation of 9 kcal/mol for molecules having 28 or more valence electrons. For smaller molecules B3LYP does as well or better than B98 and the other functionals. It is found that many of the density-functional methods have significant errors for the larger molecules in the test set.  相似文献   

19.
In this paper a new scheme was proposed to calculate the intramolecular hydrogen-bonding energies in peptides and was applied to calculate the intramolecular seven-membered ring N-H...O=C hydrogen-bonding energies of the glycine and alanine peptides. The density-functional theory B3LYP6-31G(d) and B3LYP6-311G(d,p) methods and the second-order Moller-Plesset perturbation theory MP26-31G(d) method were used to calculate the optimal geometries and frequencies of glycine and alanine peptides and related structures. MP26-311++G(d,p), MP26-311++G(3df,2p), and MP2/aug-cc-pVTZ methods were then used to evaluate the single-point energies. It was found that the B3LYP6-31G(d), MP26-31G(d), and B3LYP6-311G(d,p) methods yield almost similar structural parameters for the conformers of the glycine and alanine dipeptides. MP2/aug-cc-pVTZ predicts that the intramolecular seven-membered ring N-H...O=C hydrogen-bonding strength has a value of 5.54 kcal/mol in glycine dipeptide and 5.73 and 5.19 kcal/mol in alanine dipeptides, while the steric repulsive interactions of the seven-membered ring conformers are 4.13 kcal/mol in glycine dipeptide and 6.62 and 3.71 kcal/mol in alanine dipeptides. It was also found that MP26-311++G(3df,2p) gives as accurate intramolecular N-H...O=C hydrogen-bonding energies and steric repulsive interactions as the much more costly MP2/aug-cc-pVTZ does.  相似文献   

20.
Standard state enthalpies and free energies of formation can be computed with reasonable accuracy (usually within 4 and often 2 kJ/mol) using high level model chemistries. A comparison set of nearly 300 organic compounds ranging from 1 to 10 carbon atoms having a variety of functional groups for which enthalpy and free energy literature values are available has been examined using G2, G2MP2, G3, G3MP2, G3B3, G3MP2B3, CBS-QB3, and density functional (B3LYP/6-311+G(3df,2p)) model chemistries. G3 gives an average mean absolute deviation of 3.0 and 13.4 kJ/mol for the enthalpies and free energies, respectively, using the atomization method and 3.1 and 3.7 kJ/mol when bond separation reactions are employed. G3 and G3B3 are the most accurate overall; the related G3MP2 and G3MP2B3 are nearly as accurate and can compute larger molecules. CBS-QB3 was also found to be accurate but is more limited in the size of molecules that can be computed. The density functional energies were found to have large deviations from the literature values using either the atomization or the bond separation method. Regardless of the model employed, the free energies are increasingly underestimated by computation as the size of the molecule increases. A series of corrections applied to the aliphatic hydrocarbons is presented, which usually reduces the deviations to less than 4 kJ/mol regardless of the size of the molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号