首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
We present a methodology based on grand-canonical transition-matrix Monte Carlo and finite-size scaling analysis to calculate surface tensions in binary mixtures. In particular, mixture transition-matrix Monte Carlo is first used to calculate apparent, system-size-dependent free-energy barriers separating coexisting fluid phases. Finite-size scaling is then used to extrapolate these values to the infinitely large system limit to determine the true thermodynamic surface tension. A key distinction of the methodology is that it yields the entire isothermal surface-tension curve for a binary mixture in a relatively small number of simulations. We demonstrate the utility of the method by calculating surface-tension curves for three binary Lennard-Jones mixtures. While we have only examined the surface tension of simple fluids in this work, the method is general and can be extended to molecular fluids as well as to determine interfacial tensions of liquid-liquid interfaces.  相似文献   

2.
We have carried out extensive equilibrium molecular-dynamics simulations to study quantitatively the topology of the temperature versus density phase diagrams and related interfacial phenomena in a partially miscible symmetric Lennard-Jones binary mixture. The topological features are studied as a function of miscibility parameter, alpha = epsilonAB/epsilonAA. Here epsilonAA = epsilonBB and epsilonAB stand for the parameters related to the attractive part of the intermolecular interactions for similar and dissimilar particles, respectively. When the miscibility varies in the range 0 < alpha < 1, a continuous critical line of consolute points Tcons(rho)--critical demixing transition line--appears. This line intersects the liquid-vapor coexistence curve at different positions depending on the values of alpha, yielding mainly three different topologies for the phase diagrams. These results are in qualitative agreement to those found previously for square-well and hard-core Yukawa binary mixtures. The main contributions of the present paper are (i) a quantitative analysis of the phase behavior and (ii) a detailed study of the liquid-liquid interfacial and liquid-vapor surface tensions, as function of temperature and miscibility as well as its relationship to the topological features of the phase diagrams.  相似文献   

3.
A multithreaded Monte Carlo code was used to study the properties of binary mixtures of hard hyperspheres in four dimensions. The ratios of the diameters of the hyperspheres examined were 0.4, 0.5, 0.6, and 0.8. Many total densities of the binary mixtures were investigated. The pair correlation functions and the equations of state were determined and compared with other simulation results and theoretical predictions. At lower diameter ratios the pair correlation functions of the mixture agree with the pair correlation function of a one component fluid at an appropriately scaled density. The theoretical results for the equation of state compare well to the Monte Carlo calculations for all but the highest densities studied.  相似文献   

4.
The adsorption of binary mixtures on square lattices is studied by combining theoretical modeling and Monte Carlo (MC) simulations in grand canonical ensemble. The adsorption thermodynamics is analyzed through the total and partial isotherms. Two theoretical models have been used in the present study: (i) the first, which we called cluster approximation (CA), is based on exact calculations of configurations on finite cells. An efficient algorithm allows us to calculate the detailed structure of the configuration space for \(m = l \times l \) cells; and (ii) the second is a generalization of the classical quasi-chemical approximation (QCA) in which the adsorbate is a binary mixture of species \(a\) and \(b\) . Adsorbate–adsorbate lateral interactions are incorporated in the context of the two mentioned approximations. Results from CA and QCA are compared with MC simulations. Close agreement between simulated and theoretical data supports the validity of the theoretical models to describe the adsorption of mixed gases on two-dimensional surfaces.  相似文献   

5.
The lattice energies at zero temperature are calculated, using Lennard-Jones interactions, for a large number of crystal structures associated with ordered binary compounds. In units of the AA interaction length and strength (i.e., sigmaAA= epsilonAA= 1.0) we examine the lowest energy structures, including coexisting phases, across the space of cross-species interactions 0.6< or = sigmaAB< or = 1.1 and 1.0< or = epsilonAB< or = 2.0. The remaining parameters sigmaBB= 0.88 and epsilonBB= 0.5 are chosen so that the parameter space studied includes the space of binary glass-forming alloys. In addition to some large unit cell structures such as Ni3P and PuBr3 appearing among the lowest lattice energies, a number of low-energy structures based on close-packed lattices are found that do not correspond to any experimentally observed crystals. The prevalence and stability of metastable crystal phases at the compositions AB, A2B, and A3B is examined.  相似文献   

6.
We present calculations of the nucleation barrier during crystallization in binary hard sphere mixtures under moderate degrees of supercooling using Monte Carlo simulations in the isothermal-isobaric semigrand ensemble in conjunction with an umbrella sampling technique. We study both additive and negatively nonadditive binary hard sphere systems. The solid-fluid phase diagrams of such systems show a rich variety of behavior, ranging from simple spindle shapes to the appearance of azeotropes and eutectics to the appearance of substitutionally ordered solid phase compounds. We investigate the effect of these types of phase behavior upon the nucleation barrier and the structure of the critical nucleus. We find that the underlying phase diagram has a significant effect on the mechanism of crystal nucleation. Our calculations indicate that fractionation of the species upon crystallization increases the difficulty of crystallization of fluid mixtures and in the absence of fractionation (azeotropic conditions) the nucleation barrier is comparable to pure fluids. We also calculate the barrier to nucleation of a substitutionally ordered compound solid. In such systems, which also show solid-solid phase separation, we find that the phase that nucleates is the one whose equilibrium composition is closer to the composition of the fluid phase.  相似文献   

7.
We apply the recently developed adaptive ensemble optimization technique to simulate dense Lennard-Jones fluids and a particle-solvent model by broad-histogram Monte Carlo techniques. Equilibration of the simulated fluid is improved by sampling an optimized histogram in radial coordinates that shifts statistical weight towards the entropic barriers between the shells of the liquid. Interstitial states in the vicinity of these barriers are identified with unprecedented accuracy by sharp signatures in the quickly converging histogram and measurements of the local diffusivity. The radial distribution function and potential of mean force are calculated to high precision.  相似文献   

8.
The paper reports a Monte Carlo technique for estimation of the free energies of fluids by sampling on distributions designed for this purpose, rather than on the usual Boltzmann distribution. As an illustration of its use, the free energy of a Lennard-Jones fluid in the liquid-vapour coexistence region has been estimated by relating it to that of the inverse-twelve (soft sphere) fluid, which itself shows no condensation.  相似文献   

9.
The swelling of regular, tightly meshed model networks is investigated by a molecular-dynamics-Monte Carlo hybrid technique. The chemical equilibrium between two simulation boxes representing the gel phase and a solvent bath, respectively, is obtained by subjecting the Lennard-Jones particles of a binary mixture, serving as explicit solvent, to the particle transfer step of Gibbs ensemble-Monte Carlo. The swelling behavior, especially preferential absorption of a single component, whose dependence on temperature, pressure, and fluid composition is studied, also depends significantly on the size of the central simulation cell. These finite-size effects correlate well with those exhibited by the density of solvent-free (dry) networks. A theoretical expression, whose derivation is based on network elasticity (of dry networks) yields finite-size scaling behavior in good accord with simulation results for both dry networks and gels in contact with solvent baths. This expression can be used to extrapolate the swelling behavior of simulated finite systems to infinite system size.  相似文献   

10.
11.
Molecular simulations of binary adsorption in porous materials are a useful complement to experimental studies of mixture adsorption. Most molecular simulations of binary adsorption are performed using grand canonical Monte Carlo (GCMC) to independently examine a range of state points of interest. A disadvantage of this approach is that it only yields information at a discrete set of state points; therefore, if a complete isotherm is required for arbitrary conditions, some type of data fitting or interpolation must be used in combination with the GCMC data. We show that the transition matrix Monte Carlo (TMMC) method of Shen and Errington (Shen, V. K.; Errington, J. R. J. Chem.Phys. 2005, 122, 064508) is well-suited to simulation of binary adsorption in porous materials. At the completion of a TMMC simulation, the adsorption isotherm for all possible bulk phase compositions and pressures is available without data fitting or interpolation. It is also straightforward to use results from TMMC to compute derivatives of the isotherm such as the mixture thermodynamic correction factors, partial differential ln f(i)/partial differential ln c(j), again without data fitting or interpolation. This approach should be useful in contexts where information on the full adsorption isotherm is needed, such as the design of adsorption- or membrane-based separations.  相似文献   

12.
The phase diagram of symmetrical polymer blends (A,B) confined into thin films is studied, considering both the effect of finite film thickness D and of surface forces at the confining walls that either prefer both the same species, or different species. In the case of <“>neutral<”> walls confinement enhances the compatibility of the blend. The critical temperature is depressed, the coexistence curve gets flattened (reflecting a crossover from 3‐dimensional to 2‐dimensional critical behavior). But if both walls preferentially attract species A, then also the critical composition of the blend is shifted to the A‐rich side of the phase diagram, and the coexistence curve exhibits a bulge just above the wetting transition temperature. If one wall attracts A and the other B, lateral phase separation sets in via a first order transition. Above this transition, an interface parallel to the walls is stabilized in the system.  相似文献   

13.
We report a phase switch Monte Carlo (PSMC) method study of the freezing line of the Lennard-Jones (LJ) fluid. Our work generalizes to soft potentials the original application of the method to hard-sphere freezing and builds on a previous PSMC study of the LJ system by Errington [J. Chem. Phys. 120, 3130 (2004)]. The latter work is extended by tracing a large section of the Lennard-Jones freezing curve, the results of which we compare with a previous Gibbs-Duhem integration study. Additionally, we provide new background material regarding the statistical-mechanical basis of the PSMC method and extensive implementation details.  相似文献   

14.
The apparent critical point of the pure fluid and binary mixtures interacting with the Lennard-Jones potential has been calculated using Monte Carlo histogram reweighting techniques combined with either a fourth order cumulant calculation (Binder parameter) or a mixed-field study. By extrapolating these finite system size results through a finite size scaling analysis we estimate the infinite system size critical point. Excellent agreement is found between all methodologies as well as previous works, both for the pure fluid and the binary mixture studied. The combination of the proposed cumulant method with the use of finite size scaling is found to present advantages with respect to the mixed-field analysis since no matching to the Ising universal distribution is required while maintaining the same statistical efficiency. In addition, the accurate estimation of the finite critical point becomes straightforward while the scaling of density and composition is also possible and allows for the estimation of the line of critical points for a Lennard-Jones mixture.  相似文献   

15.
16.
The phase-switch Monte Carlo method of Wilding and Bruce [Phys. Rev. Lett. 85, 5138 (2000)] is extended to enable calculation of solid-liquid phase coexistence for soft potentials. The method directly accesses coexistence information about a system while avoiding simulation of the interfacial region. Order parameters are introduced that allow one to define a path that connects liquid and crystalline phases. Transition matrix methods are employed to bias the sampling such that both phases are sampled in a rapid and efficient manner. Coexistence properties are determined through an analysis of specific volume probability distributions, which are generated naturally during a biased simulation. The approach is demonstrated with the Lennard-Jones system. Finite-size effects are examined and compared to those for the hard sphere system. In addition, two techniques are considered for accounting for long-range interactions. The methodology presented here is general and therefore provides a basis for its application to other soft systems.  相似文献   

17.
Molecular-dynamics calculations have been carried out for six pure liquids and three binary mixtures of Lennard-Jones fluids with differing component sizes and attractive interactions. Internal energies, radial-distribution functions, velocity autocorrelation functions and self-diffusion coefficients have been calculated and are discussed together with our previous results. The three mixtures obey the Lorentz-Berthelot rules and show endothermic mixing. The excess internal energy ΔUE of mixtures with equal-sized components is symmetrical with respect to the mole fraction, but those for mixtures of different-sized components become asymmetrical. A comparison is made between the present ΔUE data and those for real mixtures.  相似文献   

18.
We report a Kinetic Monte Carlo (KMC) study of the diffusion of linear n-hexane (nC6) and 2,2-dimethylbutane (22DMB) mixture in zeolite silicalite. We first investigated the loading dependences of single component self- and corrected diffusivities of nC6 at 300 K. Anisotropic transition rates are implemented to account for the distribution of the molecules within the zeolite framework. Repulsive guest-guest interactions are modeled using the parameter introduced by Reed and Ehrlich (Surf. Sci. 102:588–601, 1981). The results are in good agreement with recent experimental Quasi Elastic Neutron Scattering data of Jobic et al. (J. Phys. Chem. B 110:2195–2201, 2006), although the influence of the adsorption isotherm inflection is not reproduced. The binary diffusion study of nC6/22DMB mixtures was performed by implementing the nC6 transition rates used for the single component study while 22DMB molecules propagate via intersection-intersection hops. This KMC model allows for different saturation capacities and accounts for interactions between molecules by introducing f ij parameters. Results show the large impact of guest-guest interactions between nC6 and 22DMB on both self- and corrected diffusivities of the two components. Molecule-size effects are found to be predominant near 22DMB saturation capacity. Acceleration/deceleration effects already described in the literature are confirmed.  相似文献   

19.
Three Lennard-Jones binary liquid mixture systems obeying Lorentz-Berthelot rules, but having differing component sizes and energy parameters, have been used to calculate the local fractions of the two components around each type of central particle over the entire composition range from molecular-dynamics data. It is found that well-defined local fractions can be determined even in the case where the size difference between the particles is large. The results obtained are compared with values predicted by the Wilson and NRTL equations. It is confirmed that the NRTL equation gives satisfactory agreement only in the case of mixtures of components having the same size parameters. A new correlation is proposed by a modification of the NRTL equation. This correlation can predict reasonably well local-fraction data for all the Lennard-Jones liquid mixtures studied so far.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号