首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
The NH-N(2) van der Waals complex has been examined at the CCSD(T) level of theory using aug-cc-pVDZ and aug-cc-pVTZ basis sets. The full basis set superposition error correction was applied. Two minimum energy structures were located for the electronic ground state. The global minimum corresponds to a linear geometry of the complex (NH-N-N), with D(e)=236 cm(-1) and R(c.m.)=4.22 A. The secondary minimum corresponds to a T-shaped geometry of C(2v) symmetry, where the nitrogen atom of the H-N moiety points toward the center of mass of the N(2) unit, aligned with the a-inertial axis of the complex. The binding energy and R(c.m.) value for the secondary minimum were 144 cm(-1) and 3.63 A, respectively. This potential energy surface is consistent with the properties of matrix-isolated NH-N(2), and it is predicted that linear NH-N(2) will be a stable complex in the gas phase at low temperatures.  相似文献   

2.
Binary complexes of C2 with rare-gas atoms (C2-Rg) have attracted theoretical interest as their potential-energy surfaces are predicted to support linear equilibrium geometries, without the local minimum for the T-shaped geometry that would be expected using a standard pair-potential model. In the present work we have explored the properties of C2-Ne using laser-induced fluorescence detection of the D 1Sigmau +-X 1Sigmag + transition. Bands of the complex were observed in association with the monomer 0-0 and 1-1 transitions. Rotationally resolved data yielded rotational constants of B'=0.099(3) cm(-1) and B"=0.100(3) cm(-1) for the excited and ground states, respectively. Analysis of the rovibrational energy-level structure for C2(D)-Ne indicates that the complex has a linear equilibrium structure with a barrier to internal rotation of approximately 15 cm(-1). Data for the ground state validate a recent high-level ab initio calculation of the potential-energy surface for C2(X)-Ne.  相似文献   

3.
The excitation energy in the multiphoton ionization spectrum of the trans-1-naphthol/N(2) cluster shows only a small red shift with respect to isolated naphthol, indicating a van der Waals pi-bound structure rather than a hydrogen-bonded one. To confirm this interpretation, high-level electronic structure calculations were performed for several pi- and hydrogen-bonded isomers of this cluster. The calculations were carried out at the second order M?ller-Plesset (MP2) level of perturbation theory with the family of correlation consistent basis sets up to quintuple-zeta quality including corrections for the basis set superposition error and extrapolation to the MP2 complete basis set (CBS) limit. We report the optimal geometries, vibrational frequencies, and binding energies (D(e)), also corrected for harmonic zero-point energies (D(0)), for three energetically low-lying isomers. In all calculations the lowest energy structure was found to be an isomer with the N(2) molecule bound to the pi-system of the naphthol ring carrying the OH group. In the CBS limit its dissociation energy was computed to be D(0) = 2.67 kcal/mol (934 cm(-1)) as compared to D(0) = 1.28 kcal/mol (448 cm(-1)) for the H-bound structure. The electronic structure calculations therefore confirm the assignment of the experimental electronic spectrum corresponding to a van der Waals pi-bound structure. The energetic stabilization of the pi-bound isomer with respect to the hydrogen-bonded one is rather unexpected when compared with previous findings in related systems, in particular phenol/N(2).  相似文献   

4.
5.
In this work the appearance potentials for the metastable decay channel of a series of van der Waals dimer ions are presented. Ionization and metastable dissociation is achieved by resonance-enhanced two-photon absorption in a linear reflection time-of-flight mass spectrometer. From the appearance potentials the binding energy of the neutral dimers is obtained and from the additionally measured ionization potentials binding energies of the dimer cations are achieved. The contribution of charge transfer resonance interaction to the binding in cluster ions is evaluated by investigation of several homo-and heterodimers of aromatic components and the heterodimer benzene/cyclohexane as an example for a dimer consisting of an aromatic and a nonaromatic component.  相似文献   

6.
7.
An empirical potential energy surface is proposed for the He-Br2 (B3pi(u)) complex. The intermolecular potential is modeled as a sum of pairwise He-Br Morse interactions plus a three-body interaction term. The parameters of the potential are fitted in order to reproduce the spectral blue-shifts and vibrational predissociation line widths measured for He-79Br2 (B, v') in the range v' = 8-48 of Br2 vibrational excitations. The calculated blue-shifts and line widths are in very good agreement with the measurements (typically within experimental error or close to its limits) along the whole range of v' levels studied. It is particularly remarkable to note the accuracy provided by the interaction surface in the region of high v' excitations (v' > 35), where three-body effects become important. The behavior of the potential surface with the Br-Br separation is analyzed and correlated with the experimental findings.  相似文献   

8.
Pure rotational transitions of a rare gas atom-reactive open-shell triatom van der Waals complex Ar-HO2 have been observed by Fourier transform microwave spectroscopy. The transitions observed are of a type with K(a) = 0 and 1. Furthermore, by monitoring the change of the free induction decay signal of the a-type transitions, b-type transitions have been observed by a double resonance technique in the region 18-49 GHz. All these transitions provide us precise molecular constants. The r0 structure of Ar-HO2 has been determined by fixing the structure of the HO2 monomer. The determined structure is planar and almost T shaped, where the argon atom is slightly shifted to the hydrogen atom of HO2. The experimental data supplemented by high-level ab initio calculations indicate that the van der Waals bond of Ar-HO2 is relatively rigid. On the other hand, effects on the unpaired electron distribution by the complex formation are found to be fairly small, since the fine and hyperfine constants of Ar-HO2 are well explained by those of the HO2 monomer.  相似文献   

9.
The first observation in the near infrared of the (12)C(2)H(2)-Kr van der Waals complex is reported, leading to the determination of rotational constants and the prediction of the 1 0 1 (J'K(a)'K(c)') ← 0 0 0 (J'K(a)'K(c)') microwave transition occurring at 3.334(4) MHz, useful for astrophysical detection.  相似文献   

10.
After carrying out a systematic basis set convergence study, we evaluate several ground state potential energy surfaces of the Ar-N(2) van der Waals complex at the coupled cluster singles and doubles model including connected triples corrections. We use the aug-cc-pVXZ (X=5,Q,D) and the daug-cc-pVQZ basis sets augmented with a set of 3s3p2d1f1g (denoted 33211) and 3s3p2d2f1g (denoted 33221) midbond functions, respectively. aug-cc-pVTZ-33211 results were available in the literature. The aug-cc-pV5Z-33211 (daug-cc-pVQZ-33221) surface is characterized by a T-shaped minimum at R(e)=3.709 (3.701) A and of 99.01 (102.50) cm(-1), and a linear saddle point at 4.260 (4.257) A and D(e)=75.28 (79.73) cm(-1). These results are compared with the values provided by the semiempirical potentials available, and those of previous theoretical studies. The basis set convergence of the intermolecular potentials is also analyzed. From the potentials the rovibronic spectroscopic properties are determined. We study the basis set convergence of the rotational frequencies. The binding parameters that characterized the aug-cc-pVTZ-33211 surface are reasonable, but the surface is not good enough to evaluate the microwave spectra. The aug-cc-pVQZ-33211 basis set results considerably improve the triple zeta and are close to the aug-cc-pV5Z-33211. Considering the small differences between the quadruple and the quintuple zeta surfaces, the latter results can be expected to be close to convergence. At this level the differences with respect to the accurate experimental frequencies are in the order of 0.7%. In the case of the daug-cc-pVXZ-33211,33221 (X=5,Q,T,D) series, the convergence of the interaction energies with respect to basis set improvement is not so smooth. The errors in the frequencies obtained with the daug-cc-pVQZ-33221 basis set with respect to experiment are in the order of 0.4%.  相似文献   

11.
Ab initio ground state potential energy surfaces are obtained from interaction energies calculated with the coupled cluster singles and doubles model including connected triples corrections [CCSD(T)] and the aug-cc-pVXZ (X=5,Q,T,D) basis sets augmented with two different sets of midbond functions (denoted 33221 and 33211). The aug-cc-pV5Z-33221 surface is characterized by a T-shaped 49.5 cm(-1) minimum at Re=3.38 Angstroms and a linear saddle point at 3.95 Angstroms with De=36.6 cm(-1). These results agree well with the values provided by the accurate semiempirical potentials available. The rovibronic spectroscopic properties are determined and compared to the available experimental data and previous theoretical results. We study the basis set convergence of the intermolecular potentials and the rotational frequencies. The aug-cc-pVTZ basis sets provide reasonable binding parameters, but seem not to be converged enough for the evaluation of the microwave spectra. The aug-cc-pVQZ basis sets considerably improve the triple zeta results. The differences between the results obtained with the aug-cc-pVTZ-33221 basis set surface and those with the aug-cc-pVQZ-33221 are smaller than those of the corresponding bases with the set of 33211 midbond functions. The aug-cc-pVQZ surfaces are close to the aug-cc-pV5Z, that are expected to be close to convergence. With our best surfaces the errors in the frequencies with respect to the accurate experimental results go down to 0.6%.  相似文献   

12.
Rotational spectra of eight isotopomers of the weakly bound van der Waals complex CO-CH4 were recorded in the frequency range from 4 to 19 GHz using a pulsed molecular beam Fourier transform microwave spectrometer. For the isotopomers containing methane monomers of Td symmetry, namely, 12C16O-12CH4, 12C16O-13CH4, 12C16O-12CD4, 13C16O-12CH4, and 13C18O-12CH4, three rotational progressions were observed that correlate to the jm=0, 1, and 2 rotational levels of free methane. For those containing partially deuterated methane monomers with C3V symmetry, namely, 12C16O-12CH3D and 12C16O-12CHD3, only two progressions were recorded, correlating to the jk=0(0) and 1(1) rotational levels of free CH3D and CHD3, respectively. The van der Waals bond distance R, intermolecular stretching frequency nus, and the corresponding stretching force constant ks were derived from the obtained spectroscopic results. The results obtained for the jm=0 ground state are compared to the previous infrared and millimeter wave data. A 17O nuclear quadrupole coupling constant was determined from the resolved hyperfine structure of 13C17O-12CH4 and was used to obtain angular information about the carbon monoxide subunit. A Coriolis interaction was deduced from the irregular spectral pattern involving levels with jm=1. Qualitative information about the extent of the perturbation was obtained from a comparison of spectroscopic constants of different isotopomers.  相似文献   

13.
The equilibrium structure and the three-dimensional potential energy surface of the Mg-HF van der Waals complex in its ground electronic state have been determined from accurate ab initio calculations using the coupled-cluster method, CCSD(T), in conjunction with the basis sets of triple- through quintuple-zeta quality. The core-electron correlation, high-order valence-electron correlation, and scalar relativistic effects were investigated. The Mg-HF complex was confirmed to be linear at equilibrium, with a vibrationless dissociation energy (into Mg and HF) D(e) of 280 cm(-1). The vibration-rotation energy levels of two isotopologues, (24)Mg-HF and (24)Mg-DF, were predicted using the variational method. The predicted spectroscopic constants can be useful in a further analysis of high-resolution vibration-rotation spectra of the Mg-HF complex.  相似文献   

14.
The H2-NH(X) van der Waals complex has been examined using ab initio theory and detected via fluorescence excitation spectroscopy of the A(3)Pi-X(3)Sigma(-) transition. Electronic structure calculations show that the minimum energy geometry corresponds to collinear H2-NH(X), with a well depth of D(e)=116 cm(-1). The potential-energy surface supports a secondary minimum for a T-shaped geometry, where the H atom of NH points towards the middle of the H2 bond (C(2v) point group). For this geometry the well depth is 73 cm(-1). The laser excitation spectra for the complex show transitions to the H2+NH(A) dissociative continuum. The onset of the continuum establishes a binding energy of D(0)=32+/-2 cm(-1) for H2-NH(X). The fluorescence from bound levels of H2-NH(A) was not detected, most probably due to the rapid reactive decay [H2-NH(A)-->H+NH2]. The complex appears to be a promising candidate for studies of the photoinitiated H2+NH abstraction reaction under conditions were the reactants are prealigned by the van der Waals forces.  相似文献   

15.
16.
The CN-Ar van der Waals complex has been observed using the B (2)Sigma(+)-X (2)Sigma(+) and A (2)Pi-X (2)Sigma(+) electronic transitions. The spectra yield a dissociation energy of D(0")=102+/-2 cm(-1) and a zero-point rotational constant of B(0")=0.067+/-0.005 cm(-1) for CN(X)-Ar. The dissociation energy for CN(A)-Ar was found to be D(0')=125+/-2 cm(-1). Transitions to vibrationally excited levels of CN(B)-Ar dominated the B-X spectrum, indicative of substantial differences in the intermolecular potential energy surfaces (PESs) for the X and B states. Ab initio PESs were calculated for the X and B states. These were used to predict rovibrational energy levels and van der Waals bond energies (D(0")=115 and D(0')=183 cm(-1)). The results for the X state were in reasonably good agreement with the experimental data. Spectral simulations based on the ab initio potentials yielded qualitative insights concerning the B-X spectrum, but the level of agreement was not sufficient to permit vibronic assignment. Electronic predissociation was observed for both CN(A)-Ar and CN(B)-Ar. The process leading to the production of CN(A,nu=8,9) fragments from the predissociation of CN(B,nu=0)-Ar was characterized using time-resolved fluorescence and optical-optical double resonance measurements.  相似文献   

17.
The influence of water molecule symmetry on hindered rotation has been investigated for H2O-He,H2O(D2O)-CO2 systems, where CO2 molecule is treated as an atom. A strong coupling model has been used for calculating the energy spectra. The eigenfunctions of Morse oscillator and asymmetric top have been used as a basis set. The results show that experimentally observed effect of spin-selective water vapour codensation may be explained by the differences between binding energies of para- and orthomodifications for H2O(D2O) molecules.  相似文献   

18.
19.
20.
A three-dimensional potential energy surface has been calculated for the ground electronic state of the HOCO+-He system. The calculations were performed at the coupled electron pair approximation level with an extended basis set which ensures a balance between accuracy and feasability. The validity of the method and of the basis set was tested through calculations of the polarizability of the He atom and of the spectroscopic constants of the HOCO+ ion. The calculated potential energy surface has been fitted to a spherical harmonic expansion to facilitate calculations of rotational excitation of HOCO+ by collisions with He.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号