首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The adiabatic approximation is problematic in time-dependent density matrix functional theory. With pure density matrix functionals (invariant under phase change of the natural orbitals) it leads to lack of response in the occupation numbers, hence wrong frequency dependent responses, in particular α(ω→0)≠α(0) (the static polarizability). We propose to relinquish the requirement that the functional must be a pure one-body reduced density matrix (1RDM) functional, and to introduce additional variables which can be interpreted as phases of the one-particle states of the independent particle reference system formed with the natural orbitals, thus obtaining so-called phase-including natural orbital (PINO) functionals. We also stress the importance of the correct choice of the complex conjugation in the two-electron integrals in the commonly used functionals (they should not be of exchange type). We demonstrate with the Lo?wdin-Shull energy expression for two-electron systems, which is an example of a PINO functional, that for two-electron systems exact responses (polarizabilities, excitation energies) are obtained, while writing this energy expression in the usual way as a 1RDM functional yields erroneous responses.  相似文献   

3.
Using the fluctuation-dissipation theorem (FDT) in the context of density-functional theory (DFT), one can derive an exact expression for the ground-state correlation energy in terms of the frequency-dependent density response function. When combined with time-dependent density-functional theory, a new class of density functionals results that use approximations to the exchange-correlation kernel fxc as input. This FDT-DFT scheme holds promise to solve two of the most distressing problems of conventional Kohn-Sham DFT: (i) It leads to correlation energy functionals compatible with exact exchange, and (ii) it naturally includes dispersion. The price is a moderately expensive O(N6) scaling of computational cost and a slower basis set convergence. These general features of FDT-DFT have all been recognized previously. In this paper, we present the first benchmark results for a set of molecules using FDT-DFT beyond the random-phase approximation (RPA)-that is, the first such results with fxc not equal to 0. We show that kernels derived from the adiabatic local-density approximation and other semilocal functionals suffer from an "ultraviolet catastrophe," producing a pair density that diverges at small interparticle distance. Nevertheless, dispersion interactions can be treated accurately if hybrid functionals are employed, as is demonstrated for He2 and HeNe. We outline constraints that future approximations to fxc should satisfy and discuss the prospects of FDT-DFT.  相似文献   

4.
Local hybrid functionals with position-dependent exact-exchange admixture are a new class of exchange-correlation functionals in density functional theory that promise to advance the available accuracy in many areas of application. Local hybrids with different local mixing functions (LMFs) governing the position dependence are validated for the heats of formation of the extended G3/99 set, and for two sets of barriers of hydrogen-transfer and heavy-atom transfer reactions (HTBH38 and NHTBH38 databases). A simple local hybrid Lh-SVWN with only Slater and exact exchange plus local correlation and a one-parameter LMF, g(r)=b(tau(W)(r)tau(r)), performs best and provides overall mean absolute errors for thermochemistry and kinetics that are a significant improvement over standard state-of-the-art global hybrid functionals. In particular, this local hybrid functional does not suffer from the systematic deterioration that standard functionals exhibit for larger molecules. In contrast, local hybrids based on generalized gradient approximation exchange tend to give rise to nonintuitive LMFs, and no improved functionals have been obtained along this route. The LMF is a real-space function and thus can be analyzed in detail. We use, in particular, graphical analyses to rationalize the performance of different local hybrids for thermochemistry and reaction barriers.  相似文献   

5.
6.
7.
Time-dependent density functional theory (TDDFT) is employed to investigate exchange-correlation-functional dependence of the vertical core-excitation energies of several molecules including H, C, N, O, and F atoms. For the local density approximation (LDA), generalized gradient approximation (GGA), and meta-GGA, the calculated X1s-->pi* excitation energies (X = C, N, O, and F) are severely underestimated by more than 13 eV. On the other hand, time-dependent Hartree-Fock (TDHF) overestimates the excitation energies by more than 6 eV. The hybrid functionals perform better than pure TDDFT because HF exchange remedies the underestimation of pure TDDFT. Among these hybrid functionals, the Becke-Half-and-Half-Lee-Yang-Parr (BHHLYP) functional including 50% HF exchange provides the smallest error for core excitations. We have also discovered the systematic trend that the deviations of TDHF and TDDFT with the LDA, GGA, and meta-GGA functionals show a strong atom-dependence. Namely, their deviations become larger for heavier atoms, while the hybrid functionals are significantly less atom-dependent.  相似文献   

8.
We recently proposed a real-space similarity metric comparing the Kohn-Sham one-particle density matrix to the local spin-density approximation model density matrix [Janesko and Scuseria, J. Chem. Phys. 127, 164117 (2007)]. This metric provides a useful ingredient for constructing local hybrid density functionals that locally mix exact exchange and semilocal density functional theory exchange. Here we present two lines of inquiry: An approximate similarity metric comparing exact versus generalized gradient approximation (GGA), exchange and parameterized mixing functions using these similarity metrics. This approach yields significantly improved thermochemistry, including GGA local hybrids whose thermochemical performance approaches GGA global hybrids.  相似文献   

9.
10.
Most present applications of time-dependent density functional theory use adiabatic functionals, i.e., the effective potential at time t is determined solely by the density at the same time. This paper discusses a method that aims to go beyond this approximation, by incorporating "memory" effects: the derived exchange-correlation potential will depend not only on present densities but also on the past. In order to ensure the potentials are causal, we formulate the action on the Keldysh contour for electrons in electromagnetic fields, from which we derive suitable Kohn-Sham equations. The exchange-correlation action is now a functional of the electron density and velocity field. A specific action functional is constructed which is Galilean invariant and yields a causal exchange-correlation vector potential for the Kohn-Sham equations incorporating memory effects. We show explicitly that the net exchange-correlation Lorentz force is zero. The potential is consistent with known dynamical properties of the homogeneous electron gas (in the linear response limit).  相似文献   

11.
Local hybrid functionals with their position-dependent exact-exchange admixture are a conceptually simple and promising extension of the concept of a hybrid functional. Local hybrids based on a simple mixing of the local spin density approximation (LSDA) with exact exchange have been shown to be successful for thermochemistry, reaction barriers, and a range of other properties. So far, the combination of this generation of local hybrids with an LSDA correlation functional has been found to give the most favorable results for atomization energies, for a range of local mixing functions (LMFs) governing the exact-exchange admixture. Here, we show that the choice of correlation functional to be used with local hybrid exchange crucially influences the parameterization also of the exchange part as well as the overall performance. A novel ansatz for the correlation part of local hybrids is suggested based on (i) range-separation of LSDA correlation into short-range (SR) and long-range (LR) parts, and (ii) partial or full elimination of the one-electron self-correlation from the SR part. It is shown that such modified correlation functionals allow overall larger exact exchange admixture in thermochemically competitive local hybrids than before. This results in improvements for reaction barriers and for other properties crucially influenced by self-interaction errors, as demonstrated by a number of examples. Based on the range-separation approach, a fresh view on the breakdown of the correlation energy into dynamical and non-dynamical parts is suggested.  相似文献   

12.
Adiabatic time-dependent density functional theory is a powerful method for calculating electronic excitation energies of complex systems, but the quality of the results depends on the choice of approximate density functional. In this article we test two promising new density functionals, M11 and M11-L, against databases of 214 diverse electronic excitation energies, and we compare the results to those for 16 other density functionals of various kinds and to time-dependent Hartree-Fock. Charge transfer excitations are well known to be the hardest challenge for TDDFT. M11 is a long-range-corrected hybrid meta-GGA, and it shows better performance for charge transfer excitations than any of the other functionals except M06-HF, which is a specialized functional that does not do well for valence excitations. Several other long-range-corrected hybrid functionals also do well, and we especially recommend M11, ωB97X, and M06-2X for general spectroscopic applications because they do exceptionally well on ground-state properties as well as excitation energies. Local functionals are preferred for many applications to extended systems because of their significant cost advantage for large systems. M11-L is a dual-range local functional and-unlike all previous local functionals-it has good performance for Rydberg states as well as for valence states. Thus it is highly recommended for excitation energy calculations on extended systems.  相似文献   

13.
Many useful concepts developed within density functional theory provide much insight for the understanding and prediction of chemical reactivity, one of the main aims in the field of conceptual density functional theory. While approximate evaluations of such concepts exist, the analytical and efficient evaluation is, however, challenging, because such concepts are usually expressed in terms of functional derivatives with respect to the electron density, or partial derivatives with respect to the number of electrons, complicating the connection to the computational variables of the Kohn-Sham one-electron orbitals. Only recently, the analytical expressions for the chemical potential, one of the key concepts, have been derived by Cohen, Mori-Sánchez, and Yang, based on the potential functional theory formalism. In the present work, we obtain the analytical expressions for the real-space linear response function using the coupled perturbed Kohn-Sham and generalized Kohn-Sham equations, and the Fukui functions using the previous analytical expressions for chemical potentials of Cohen, Mori-Sánchez, and Yang. The analytical expressions are exact within the given exchange-correlation functional. They are applicable to all commonly used approximate functionals, such as local density approximation (LDA), generalized gradient approximation (GGA), and hybrid functionals. The analytical expressions obtained here for Fukui function and linear response functions, along with that for the chemical potential by Cohen, Mori-Sánchez, and Yang, provide the rigorous and efficient evaluation of the key quantities in conceptual density functional theory within the computational framework of the Kohn-Sham and generalized Kohn-Sham approaches. Furthermore, the obtained analytical expressions for Fukui functions, in conjunction with the linearity condition of the ground state energy as a function of the fractional charges, also lead to new local conditions on the exact functionals, expressed in terms of the second-order functional derivatives. We implemented the expressions and demonstrate the efficacy with some atomic and molecular calculations, highlighting the importance of relaxation effects.  相似文献   

14.
Knowledge of asymptotic conditions on exchange allows for a better design of exchange energy expressions in density functional theory. By working inside an exchange-only framework, the fulfillment of such conditions by some of the most widely used exchange functionals is discussed. In turn, we propose a model expression which partially meets the energetics and asymptotics of both the exchange energy density and potential. Improvement upon the local spin density approximation without the use of generalized gradient corrections is also presented. Hartree-Fock orbitals are employed to build electron densities. © 1997 John Wiley & Sons, Inc.  相似文献   

15.
The Heyd-Scuseria-Ernzerhof (HSE) density functionals are popular for their ability to improve upon the accuracy of standard semilocal functionals such as Perdew-Burke-Ernzerhof (PBE), particularly for semiconductor band gaps. They also have a reduced computational cost compared to hybrid functionals, which results from the restriction of Fock exchange calculations to small inter-electron separations. These functionals are defined by an overall fraction of Fock exchange and a length scale for exchange screening. We systematically examine this two-parameter space to assess the performance of hybrid screened exchange (sX) functionals and to determine a balance between improving accuracy and reducing the screening length, which can further reduce computational costs. Three parameter choices emerge as useful: "sX-PBE" is an approximation to the sX-LDA screened exchange density functionals based on the local density approximation (LDA); "HSE12" minimizes the overall error over all tests performed; and "HSE12s" is a range-minimized functional that matches the overall accuracy of the existing HSE06 parameterization but reduces the Fock exchange length scale by half. Analysis of the error trends over parameter space produces useful guidance for future improvement of density functionals.  相似文献   

16.
To address the impact of electron correlations in the linear and non-linear response regimes of interacting many-electron systems exposed to time-dependent external fields, we study one-dimensional (1D) systems where the interacting problem is solved exactly by exploiting the mapping of the 1D N-electron problem onto an N-dimensional single electron problem. We analyze the performance of the recently derived 1D local density approximation as well as the exact-exchange orbital functional for those systems. We show that the interaction with an external resonant laser field shows Rabi oscillations which are detuned due to the lack of memory in adiabatic approximations. To investigate situations where static correlations play a role, we consider the time-evolution of the natural occupation numbers associated to the reduced one-body density matrix. Those studies shed light on the non-locality and time-dependence of the exchange and correlation functionals in time-dependent density and density-matrix functional theories.  相似文献   

17.
We report how closely the Kohn-Sham highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) eigenvalues of 11 density functional theory (DFT) functionals, respectively, correspond to the negative ionization potentials (-IPs) and electron affinities (EAs) of a test set of molecules. We also report how accurately the HOMO-LUMO gaps of these methods predict the lowest excitation energies using both time-independent and time-dependent DFT (TD-DFT). The 11 DFT functionals include the local spin density approximation (LSDA), five generalized gradient approximation (GGA) functionals, three hybrid GGA functionals, one hybrid functional, and one hybrid meta GGA functional. We find that the HOMO eigenvalues predicted by KMLYP, BH&HLYP, B3LYP, PW91, PBE, and BLYP predict the -IPs with average absolute errors of 0.73, 1.48, 3.10, 4.27, 4.33, and 4.41 eV, respectively. The LUMOs of all functionals fail to accurately predict the EAs. Although the GGA functionals inaccurately predict both the HOMO and LUMO eigenvalues, they predict the HOMO-LUMO gap relatively accurately (approximately 0.73 eV). On the other hand, the LUMO eigenvalues of the hybrid functionals fail to predict the EA to the extent that they include HF exchange, although increasing HF exchange improves the correspondence between the HOMO eigenvalue and -IP so that the HOMO-LUMO gaps are inaccurately predicted by hybrid DFT functionals. We find that TD-DFT with all functionals accurately predicts the HOMO-LUMO gaps. A linear correlation between the calculated HOMO eigenvalue and the experimental -IP and calculated HOMO-LUMO gap and experimental lowest excitation energy enables us to derive a simple correction formula.  相似文献   

18.
We report the derivation and implementation of analytical nuclear gradients for excited states using time‐dependent density functional theory using the Tamm–Dancoff approximation combined with uncoupled frozen‐density embedding using density fitting. Explicit equations are presented and discussed. The implementation is able to treat singlet as well as triplet states and functionals using the local density approximation, the generalized gradient approximation, combinations with Hartree–Fock exchange (hybrids), and range‐separated functionals such as CAM‐B3LYP. The new method is benchmarked against supermolecule calculations in two case studies: The solvatochromic shift of the (vertical) fluorescence energy of 4‐aminophthalimide on solvation, and the first local excitation of the benzonitrile dimer. Whereas for the 4‐aminophthalimide–water complex deviations of about 0.2 eV are obtained to supermolecular calculations, for the benzonitrile dimer the maximum error for adiabatic excitation energies is below 0.01 eV due to a weak coupling of the subsystems. © 2017 Wiley Periodicals, Inc.  相似文献   

19.
It is known that ab initio molecular dynamics (AIMD) simulations of liquid water at ambient conditions, based on the generalized gradient approximation (GGA) to density functional theory (DFT), with commonly used functionals fail to produce structural and diffusive properties in reasonable agreement with experiment. This is true for canonical, constant temperature simulations where the density of the liquid is fixed to the experimental density. The equilibrium density, at ambient conditions, of DFT water has recently been shown by Schmidt et al. [J. Phys. Chem. B, 113, 11959 (2009)] to be underestimated by different GGA functionals for exchange and correlation, and corrected by the addition of interatomic pair potentials to describe van der Waals (vdW) interactions. In this contribution we present a DFT-AIMD study of liquid water using several GGA functionals as well as the van der Waals density functional (vdW-DF) of Dion et al. [Phys. Rev. Lett. 92, 246401 (2004)]. As expected, we find that the density of water is grossly underestimated by GGA functionals. When a vdW-DF is used, the density improves drastically and the experimental diffusivity is reproduced without the need of thermal corrections. We analyze the origin of the density differences between all the functionals. We show that the vdW-DF increases the population of non-H-bonded interstitial sites, at distances between the first and second coordination shells. However, it excessively weakens the H-bond network, collapsing the second coordination shell. This structural problem is partially associated to the choice of GGA exchange in the vdW-DF. We show that a different choice for the exchange functional is enough to achieve an overall improvement both in structure and diffusivity.  相似文献   

20.
Real-time first principle simulations are presented of the D(2) Coulomb explosion dynamics detonated by exposure to very intense few-cycle laser pulse. Three approximate functionals within the time-dependent density functional theory (TDDFT) functionals are examined for describing the electron dynamics, including time-dependent Hartree-Fock theory. Nuclei are treated classically with quantum corrections. The calculated results are sensitive to the underlying electronic structure theory, showing too narrow kinetic energy distribution peaked at too high kinetic energy when compared with recent experimental results (Phys. Rev. Lett. 2003, 91, 093002). Experiment also shows a low energy peak which is not seen in the present calculation. We conclude that while Ehrenfest-adiabatic-TDDFT can qualitatively account for the dynamics, it requires further development, probably beyond the adiabatic approximation, to be quantitative.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号