首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
State of the art coupled cluster (CC) methods are applied to accurately characterize the ground state electronic structure and photoelectron spectra of transition metal carbene ions MCH(2) (+) (M=Fe, Co, and Ni). The geometries and energies of the lowest energy quartet, triplet, and doublet electronic states as well as several low-lying vertical excitation energies of FeCH(2) (+), CoCH(2) (+), and NiCH(2) (+) are reported. The excitation energies are computed using the equation-of-motion CC and for states of different symmetries, by the energy differences of single reference ground and excited states (Delta-CC). The latter employ several reference states; the unrestricted Hartree-Fock, restricted open shell Hartree-Fock, and unrestricted Kohn-Sham. We conclude that the (2)A(1) electronic ground state of NiCH(2) (+) is separated by about 30.0 kJ/mol from the next highest state, and the lowest (4)B(1) and (4)B(2) states of FeCH(2) (+) as well as the (3)A(2) and (3)A(1) states of CoCH(2) (+) are nearly degenerate. The presence of metal-pi*(MCH(2)) charge transfer states with significant oscillator strengths in the visible/near-UV energy domain of the theoretical spectra of FeCH(2) (+) and CoCH(2) (+) are at the origin of the photofragmentation of these compounds observed after irradiation between 310 and 360 nm.  相似文献   

2.
The potential energy surfaces (PESs) for both the ground and the excited electronic states of the C(2)B radical are investigated using various multireference (MR) coupled-cluster (CC) approaches. In the ground state case we employ the reduced MR (RMR) CC approach with singles (S) and doubles (D), the RMR CCSD method, as well as its RMR CCSD(T) version corrected for secondary triples, relying on various model spaces and basis sets. The reliability of this approach is also tested against the benchmark full configuration interaction results obtained for a small Dunning-Hay (DH) basis set. The results imply a clear preference for a cyclic structure which, however, breaks the C(2v) symmetry. This symmetry breaking manifests itself strongly at the level of the independent particle model, as represented by the restricted open-shell Hartree-Fock approximation, but the tendency toward symmetry breaking diminishes with the increasing size of the basis set employed as well as with the enhanced account of the correlation effects. It is likely to disappear in the complete basis set limit. The general model space CCSD method is then used to compute vertical excitation energies for a number of excited states as well as the cuts of the PES as the boron atom moves around the C(2) fragment. These results also explain why no symmetry breaking is found when relying on a spin contaminated unrestricted Hartree-Fock reference, as in the UMP2 method.  相似文献   

3.
4.
5.
The electronic structure of spiro[4.4]nonatetraene 1 as well as that of its radical anion and cation were studied by different spectroscopies. The electron‐energy‐loss spectrum in the gas phase revealed the lowest triplet state at 2.98 eV and a group of three overlapping triplet states in the 4.5 – 5.0 eV range, as well as a number of valence and Rydberg singlet excited states. Electron‐impact excitation functions of pure vibrational and triplet states identified various states of the negative ion, in particular the ground state with an attachment energy of 0.8 eV, an excited state corresponding to a temporary electron attachment to the 2b1 MO at an attachment energy of 2.7 eV, and a core excited state at 4.0 eV. Electronic‐absorption spectroscopy in cryogenic matrices revealed several states of the positive ion, in particular a richly structured first band at 1.27 eV, and the first electronic transition of the radical anion. Vibrations of the ground state of the cation were probed by IR spectroscopy in a cryogenic matrix. The results are discussed on the basis of density‐functional and CASSCF/CASPT2 quantum‐chemical calculations. In their various forms, the calculations successfully rationalized the triplet and the singlet (valence and Rydberg) excitation energies of the neutral molecule, the excitation energies of the radical cation, its IR spectrum, the vibrations excited in the first electronic absorption band, and the energies of the ground and the first excited states of the anion. The difference of the anion excitation energies in the gas and condensed phases was rationalized by a calculation of the Jahn‐Teller distortion of the anion ground state. Contrary to expectations based on a single‐configuration model for the electronic states of 1 , it is found that the gap between the first two excited states is different in the singlet and the triplet manifold. This finding can be traced to the different importance of configuration interaction in the two multiplicity manifolds.  相似文献   

6.
Accurate ab initio study of the lowest excited state (A (2)B(2)) of the thiophenoxyl radical is presented. The calculated equilibrium geometries, excitation energies, and harmonic vibrational frequencies show that the A (2)B(2) <-- X (2)B(1) excitation in C(6)H(5)S has different characteristics than the analogous transition in the phenoxyl radical. Vertical excitation energies for other low-lying (<4.5 eV) excited states of the thiophenoxyl radical are also presented and compared with available experimental data.  相似文献   

7.
A new approach to the electron correlation problem based on phase space intracules derived from the Wigner distribution is applied to excited states. The computed electron correlation energy reduces the mean absolute error in the prediction of the excitation energies of 55 atomic excited states from 0.65 eV for unrestricted Hartree-Fock to 0.32 eV. This compares favorably to a mean absolute deviation of 0.52 eV for second order Moller-Plesset perturbation theory and 0.35 eV for the Lee-Yang-Parr functional. An analogous correlation model based on the Husimi distribution is developed. Predicted correlation energies and excitation energies from this model are significantly worse than for the Wigner intracule based model. Alternative correlation kernels may be more suitable for the Husimi intracule based approach.  相似文献   

8.
The semiempirical quantum chemical methods MNDO, AM1 and PM3 were used to investigate the performance of the single excited configuration interaction (SCI) approximation for calculating low energy excitation energies of open-shell systems. Systematic calculations were done for eight radicals formed by reactions of H√, OH√ and eaq with various acrylates and N-isopropylacrylamide. The calculated electronic spectra show a reasonable correlation with experimental data for both neutral radicals and radical ions. The AM1 as well as the PM3 formalism can be successfully applied to calculate the low energy excited states of these types of open shell systems. The best correlation between experimental and calculated excitation energies was obtained using the PM3 method (correlation coefficient 0.96, overall average error 0.16 eV).  相似文献   

9.
The equilibrium structures and physical properties of the X (1)sigma(+) linear electronic states, linear excited singlet and triplet electronic states of hydroboron monoxide (HBO) (A (1)sigma(-), B (1)delta, a (3)sigma(+), and b (3)delta) and boron hydroxide (BOH) (A (1)sigma(+), B (1)Pi, and b (3)Pi), and their bent counterparts (HBO a (3)A('), b (3)A("), A (1)A("), B (1)A(') and BOH X (1)A('), b (3)A('), c (3)A("), A (1)A('), B (1)A('), C (1)A(")) are investigated using excited electronic state ab initio equation-of-motion coupled-cluster (EOM-CC) methods. A new implementation of open-shell EOM-CC including iterative partial triple excitations (EOM-CC3) was tested. Coupled-cluster wave functions with single and double excitations (CCSD), single, double, and iterative partial triple excitations (CC3), and single, double, and full triple excitations (CCSDT) are employed with the correlation-consistent quadruple and quintuple zeta basis sets. The linear HBO X (1)sigma(+) state is predicted to lie 48.3 kcal mol(-1) (2.09 eV) lower in energy than the BOH X (1)sigma(+) linear stationary point at the CCSDT level of theory. The CCSDT BOH barrier to linearity is predicted to lie 3.7 kcal mol(-1) (0.16 eV). With a harmonic zero-point vibrational energy correction, the HBO X (1)sigma(+)-BOH X (1)A(') energy difference is 45.2 kcal mol(-1) (1.96 eV). The lowest triplet excited electronic state of HBO, a (3)A('), has a predicted excitation energy (T(e)) of 115 kcal mol(-1) (4.97 eV) from the HBO ground state minimum, while the lowest-bound BOH excited electronic state, b (3)A('), has a T(e) of 70.2 kcal mol(-1) (3.04 eV) with respect to BOH X (1)A('). The T(e) values predicted for the lowest singlet excited states are A (1)A(")<--X (1)sigma(+)=139 kcal mol(-1) (6.01 eV) for HBO and A (1)A(')<--X (1)A(')=102 kcal mol(-1) (4.42 eV) for BOH. Also for BOH, the triplet vertical transition energies are b (3)A(')<--X (1)A(')=71.4 kcal mol(-1) (3.10 eV) and c (3)A(")<--X (1)A(')=87.2 kcal mol(-1) (3.78 eV).  相似文献   

10.
A theoretical study of the electronic structure of the photoactive yellow protein (PYP) model chromophore, para-coumaric acid (p-CA), is presented. Electronically excited states of the phenolate and carboxylate isomers of the deprotonated p-CA are characterized by high-level ab initio methods including state-specific and multistate multireference pertrubation theory (SS-CASPT2, and MS-CASPT2), equation-of-motion coupled-cluster methods with single and double substitutions (EOM-CCSD) and with an approximate account of triple excitations (CC3). We found that the two isomers have distinctly different patterns of ionization and excitation energies. Their excitation energies differ by more than 1 eV, in contradiction to the experimental report [Rocha-Rinza et al., J. Phys. Chem. A 113, 9442 (2009)]. The calculations confirm metastable (autoionizing) character of the valence excited states of both phenolate and carboxylate isomers of p-CA(-) in the gas phase. The type of resonance is different in the two forms. In the phenolate, the excited state lies above the detachment continuum (a shape resonance), whereas in the carboxylate the excited π→π(*) state lies below the π-orbital ionization continuum, but is above the states derived from ionization from three other orbitals (Feshbach resonance). The computed oscillator strength of the bright electronic state in the phenolate is higher than in the carboxylate, in agreement with Hu?ckel's model predictions. The analysis of photofragmentation channels shows that the most probable products for the methylated derivatives of the phenolate and carboxylate forms of p-CA(-) are CH(3), CH(2)O and CH(3), CH(2)O, CO(2), respectively, thus suggesting an experimental probe that may discriminate between the two isomers.  相似文献   

11.
The electronic structure of NiCH(2) (+), representative of transition metal carbene ions, is investigated by means of several methods of quantum chemistry. The relative stabilities of the four low-lying doublet electronic states ((2)A(1), (2)A(2), (2)B(1), and (2)B(2)) are determined at the coupled cluster singles and doubles level (CCSD) and triples level [CCSD(T) and CCSDT-3] with both a Hartree-Fock and density functional theory (Kohn-Sham) reference. The equation-of-motion coupled cluster for treatment of excited states in singles and doubles approximation (EOM-CCSD) is used to characterize the transition energies from the (2)A(1) electronic ground state to the low-lying doublet excited states. The (2)A(2) and (2)B(1) states are nearly degenerate, found to be separated by 940 cm(-1) at the EOM-CCSD level, in agreement with the CASSCF energy ordering. The (2)B(2) state is calculated to be higher in energy by more than 1.0 eV. The spin purity of the low-lying doublet and quadruplet states described by CCSD calculations based on the unrestricted open-shell Hartree-Fock reference is discussed.  相似文献   

12.
The electronic structure of GdF is calculated based on frozen-core four-component relativistic configuration interactions. The resulting excitation energies are fairly close to experiment and correctly designate the excited states. For instance, the existence of the experimentally inferred state at 0.55 eV above the ground state is confirmed, having Omega=132 with (4f(7)5d(+) (1)6s(+) (1)); it is 0.58 eV above the ground state according to the present calculation.  相似文献   

13.
The capabilities of the recently developed multireference, general-model-space (GMS), state-universal (SU) coupled-cluster (CC) method have been extended in order to enable the handling of any excited state that represents a single (S) or a double (D) excitation relative to the ground state. A series of calculations concerning the ground and excited states of the CH(+), HF, F(2), H(2)O, NH(2), and CH(2) molecules were carried out so as to assess the performance of the GMS SU CCSD method. For diatomics we have computed the entire potential energy curves, while for triatomics we have focused on vertical excitation energies. We demonstrate how a systematic enlargement of the model space enables a consideration of a larger and larger number of excited states. A comparison of the CC and full configuration interaction or large-scale CI results enables an assessment of the accuracy and reliability of the GMS SU CCSD method within a given basis set. In all cases very good results have been obtained, including highly excited states and those having a doubly-excited character.  相似文献   

14.
对乙酰基的基态(X12A′)和激发态进行了理论和实验研究。通过采用MRSDCI和MP2方法计算,获得了CH3CO自由基的四个电子激发态(A12A″,B22A′,C32A′,D22A″),其垂直激发能分别为250.8kJ·mol-1,472.3kJ·mol-1,645.8kJ·mol-1和674.7kJ·mol-1。运用时间分辨付里叶红外光谱仪(TR-FTIR)分别研究了CH3CO自由基的热解和光解反应,观察到初生产物CO(V)的红外发射光谱.势垒仅为75.2kJ·mol-1的基态CH3CO极易热解.532um的激光只能将CH3CO激发到束缚态A12A″,故未观察到CO信号;而248nm或266nm的激光可使CH3CO发生B22A′←X12A′跃迁,生成高振动激发的CO(V8)产物.  相似文献   

15.
The first few excited states of the 11-cis-retinal (PSB11) chromophore have been studied at the coupled-cluster approximative singles and doubles (CC2) level using triple-zeta quality basis sets augmented with double sets of polarisation functions. The two lowest vertical excitation energies of 2.14 and 3.21 eV are in good agreement with recently reported experimental values of 2.03 and 3.18 eV obtained in molecular beam measurements. Calculations at the time-dependent density functional theory (TDDFT) level using the B3LYP hybrid functional yield vertical excitation energies of 2.34 and 3.10 eV for the two lowest states. Zero-point vibrational energy (ZPVE) corrections of -0.09 and -0.17 eV were deduced from the harmonic vibrational frequencies for the ground and excited states calculated at the density functional theory (DFT) and TDDFT level, respectively, using the B3LYP hybrid functional.  相似文献   

16.
The dissociative photoionization of energy selected methanol isotopologue (CH(3)OH, CD(3)OH, CH(3)OD and CD(3)OD) cations was investigated using imaging Photoelectron Photoion Coincidence (iPEPICO) spectroscopy. The first dissociation is an H/D-atom loss from the carbon, also confirmed by partial deuteration. Somewhat above 12 eV, a parallel H(2)-loss channel weakly asserts itself. At photon energies above 15 eV, in a consecutive hydrogen molecule loss to the first H-atom loss, the formation of CHO(+)/CDO(+) dominates as opposed to COH(+)/COD(+) formation. We see little evidence for H-atom scrambling in these processes. In the photon energy range corresponding to the B[combining tilde] and C[combining tilde] ion states, a hydroxyl radical loss appears yielding CH(3)(+)/CD(3)(+). Based on the branching ratios, statistical considerations and ab initio calculations, this process is confirmed to take place on the first electronically excited ?(2)A' ion state. Uncharacteristically, internal conversion is outcompeted by unimolecular dissociation due to the apparently weak Renner-Teller-like coupling between the X[combining tilde] and the ? ion states. The experimental 0 K appearance energies of the ions CH(2)OH(+), CD(2)OH(+), CH(2)OD(+) and CD(2)OD(+) are measured to be 11.646 ± 0.003 eV, 11.739 ± 0.003 eV, 11.642 ± 0.003 eV and 11.737 ± 0.003 eV, respectively. The E(0)(CH(2)OH(+)) = 11.6454 ± 0.0017 eV was obtained based on the independently measured isotopologue results and calculated zero point effects. The 0 K heat of formation of CH(2)OH(+), protonated formaldehyde, was determined to be 717.7 ± 0.7 kJ mol(-1). This yields a 0 K heat of formation of CH(2)OH of -11.1 ± 0.9 kJ mol(-1) and an experimental 298 K proton affinity of formaldehyde of 711.6 ± 0.8 kJ mol(-1). The reverse barrier to homonuclear H(2)-loss from CH(3)OH(+) is determined to be 36 kJ mol(-1), whereas for heteronuclear H(2)-loss from CH(2)OH(+) it is found to be 210 kJ mol(-1).  相似文献   

17.
18.
We have analyzed singlet and triplet excitation energies in oligothiophenes (up to five rings) using time-dependent density-functional theory (TD-DFT) with different exchange-correlation functionals and compared them with results from the approximate coupled-cluster singles and doubles model (CC2) and experimental data. The excitation energies have been calculated in geometries obtained by TD-DFT optimization of the lowest excited singlet state and in the ground-state geometries of the neutral and anionic systems. TD-DFT methods underestimate photoluminescence energies but the energy difference between singlet and triplet states shows trends with the chain-length similar to CC2. We find that the second triplet excited state is below the first singlet excited state for long oligomers in contrast with the previous assignment of Rentsch et al. (Phys.Chem. Chem. Phys. 1999, 1, 1707). Their photodetachment photoelectron spectroscopy measurements are better described by considering higher triplet excited states.  相似文献   

19.
Dynamic polarizabilities for open- and closed-shell molecules were obtained by using coupled-cluster (CC) linear response theory with full treatment of singles, doubles, and triples (CCSDT-LR) with large basis sets utilizing the NWChem software suite. By using four approximate CC methods in conjunction with augmented cc-pVNZ basis sets, we are able to evaluate the convergence in both many-electron and one-electron spaces. For systems with primarily dynamic correlation, the results for CC3 and CCSDT are almost indistinguishable. For systems with significant static correlation, the CC3 tends to overestimate the triples contribution, while the PS(T) approximation [J. Chem. Phys. 127, 164105 (2007)] produces mixed results that are heavily dependent on the accuracies provided by noniterative approaches used to correct the equation-of-motion CCSD excitation energies. Our results for open-shell systems show that the choice of reference (restricted open-shell Hartree-Fock versus unrestricted Hartree-Fock) can have a significant impact on the accuracy of polarizabilities. A simple extrapolation based on pentuple-zeta CCSD calculations and triple-zeta CCSDT calculations reproduces experimental results with good precision in most cases.  相似文献   

20.
The performance of 24 density functionals, including 14 meta-generalized gradient approximation (mGGA) functionals, is assessed for the calculation of vertical excitation energies against an experimental benchmark set comprising 14 small- to medium-sized compounds with 101 total excited states. The experimental benchmark set consists of singlet, triplet, valence, and Rydberg excited states. The global-hybrid (GH) version of the Perdew-Burke-Ernzerhoff GGA density functional (PBE0) is found to offer the best overall performance with a mean absolute error (MAE) of 0.28 eV. The GH-mGGA Minnesota 2006 density functional with 54% Hartree-Fock exchange (M06-2X) gives a lower MAE of 0.26 eV, but this functional encounters some convergence problems in the ground state. The local density approximation functional consisting of the Slater exchange and Volk-Wilk-Nusair correlation functional (SVWN) outperformed all non-GH GGAs tested. The best pure density functional performance is obtained with the local version of the Minnesota 2006 mGGA density functional (M06-L) with an MAE of 0.41 eV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号