首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Micron-sized composite particles consisting of spherical polymer cores and metallic copper shells were prepared. Basic cupric carbonate was coated on sulfonated polymer particles by pH-controlled hydrolysis of cupric nitrate. The thickness of the coating layer was controlled by the number of polymer particles. Addition of CO2 during aging increased the shell thickness. Electrically conducting particles were obtained by reduction with hydrogen of the composite particles obtained. Received: 9 August 2000 Accepted: 17 July 2001  相似文献   

2.
A series of novel structured latex particles with interpenetrating polymer network (IPN) cores and glassy SAN shells were developed in an attempt to investigate the feasibility of these polymers as both toughening and damping agents in thermoplastics. The IPN cores were composed of one impact part (polybutadiene based) and one damping part (acrylic based, with Tg around +10°C). The particle morphologies of these polymers were determined by TEM. The glass transitions and mechanical behavior of the polymers were characterized from DMS. The effect of different components on the final core/shell particle morphologies and mechanical properties was studied. The mechanical behavior of core/shell particles with IPN cores was also compared with that of separate core/shell and multilayered core/shell particles. In addition, normal core/shell synthesis (rubbery part first then the glassy part) and inverted core/shell synthesis (glassy part first then the rubbery part) were performed to provide another access for morphology control. It was found that the core/shell latex particles with poly(butyl acrylate) based copolymers are more miscible than poly(ethylhexyl methacrylate)-based copolymers. The high grafting efficiency of poly(butyl acrylate) plays an important role in governing phase miscibility. The latex particles synthesized by the inverted core/shell mode showed higher miscibility than the normal synthesized ones. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 2193–2206, 1997  相似文献   

3.
The integrals of the linear loss shear modulus vs. temperature (loss area, LA) and linear tan δ vs. temperature (tan δ area, TA) were characterized for various core/shell latex particles with synthetic rubber, poly(butadiene-stat-styrene) [P (Bd/S), 90/10], and interpenetrating polymer networks (IPN) as the cores. The IPN cores were composed of P(Bd/S) (Tg ≃ − 70°C) and an acrylate based copolymer (Tg around 10°C) for potential impact and damping improvement in thermoplastics. Poly(styrene-stat-acrylonitrile) (SAN, 72/28) was the shell polymer for all these polymers. Under the same loading, for both toughening and damping controls, among the IPN core/shell, blend of separate core/shell, and multilayered core/shell polymers, the IPN core/shell polymers were the best dampers. However, the other core/shell polymers also showed higher LA values than P(Bd/S)/SAN core/shell polymer. A comparison of LA values via a group contribution analysis method was made, the effect of particle morphology and phase continuity on damping being studied. Inverted core/shell latex particles (glassy polymer SAN was synthesized first) showed much higher LA and TA values than normal core/shell ones (rubbery polymer was synthesized first). Models for maximum LA and TA behavior are proposed. The damping property was essentially controlled by the phase miscibility and morphology of the core/shell latex particles. The LA values for each peak in these multiphase materials provided some indication of the several fractional phase volumes. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35 : 1501–1514, 1997  相似文献   

4.
 Core–shell latex particles made of a poly(butyl methacrylate) (PBMA) core and a thin polypyrrole (PPy) shell were synthesized by two-stage polymerization. In the first stage, PBMA latex particles were synthesized in a semicontinuous process by free-radical polymerization. PBMA latex particles were labeled either with an energy donor or with an energy acceptor, in two different syntheses. These particles were used in a second stage as seeds for the synthesis of the core–shell particles. The PPy shell was polymerized around the PBMA core latex in an oxidative chemical in situ polymerization. Proofs for the success of the core–shell synthesis were obtained using nonradiative energy transfer (NRET) and atomic force microscopy (AFM). NRET gives access to the rate of polymer chain migration between adjacent particles in a film annealed at a temperature above the glass-transition temperature T g of the particles. Slower chain migration of the PBMA polymer chains was obtained with the PBMA–PPy core–shell particles compared to rate of the PBMA polymer chain migration found with the pure, uncoated PBMA particles. This result is due to the coating of PBMA by PPy, which hinders the migration of the PBMA polymer chains between adjacent particles in the film. This observation has been confirmed by AFM measurements showing that the flattening of the latex film surface is much slower for the core–shell particles than for the pure PBMA particles. This result can again be explained by the presence of a rigid PPy shell around the PBMA core. Thus, these two complementary methods have given evidence that real core–shell particles were synthesized and that the shell seriously hinders film formation of the particles in spite of the fact that it is very thin (thickness close to 1 nm) compared to the size (750 and 780 nm in diameter) of the PBMA core. Transparency measurements confirm the results obtained by NRET and AFM. When the films are placed at a temperature higher than the T g of PBMA, the increase in transparency is faster for films made with the uncoated PBMA particles than for films made with the coated PBMA particles. This result indicates again that the presence of the rigid PPy layer around the PBMA core reduces considerably the speed at which the structure of the film is modified when heated above the T g of PBMA. Received: 02 September 1999 Accepted: 21 December 1999  相似文献   

5.
Highly uniform, core-shell microgels consisting of single gold nanoparticle cores and cross-linked poly-N-isopropylacrylamide (PNIPAM) shells were prepared by a novel, versatile protocol. The synthetic pathway allows control over the polymer shell thickness and its swelling behavior. The core-shell structure was investigated by electron microscopy and atomic force microscopy, whereas the swelling behavior of the shell was studied by means of dynamic light scattering and UV-vis spectroscopy. Furthermore, the latter method was used to investigate the optical properties of the hybrid particles. By modeling the scattering contribution from the PNIPAM shells, the absorption spectra of the gold nanoparticle cores could be recovered. This allows the particle concentration to be determined, and this in turn permits the calculation of the molar mass of the hybrid particles as well as the refractive index of the shells.  相似文献   

6.
Summary.   Silicon oxide or metal oxide clusters or small particles with polymerizable organic groups covalently bonded to their surface can be copolymerized with organic monomers by various polymerization techniques. Whereas the preparation and properties of the polymers reinforced by R 8Si8O12 have already been well investigated, analogous materials with incorporated transition metal oxide clusters are only beginning to show their potential as an interesting new class of inorganic-organic hybrid polymers. In the second part of the article, approaches are reviewed in which the inorganic building block serves as an initiator for polymerization reactions. This results in materials in which the organic polymer is grafted from an inorganic core. Most work has been done with surface-modified silica particles. Free radical polymerizations and atom transfer radical polymerizations with macroinitiators are summarized. The latter method results in polymeric particles in which an inorganic core is surrounded by an organic polymer shell. A new approach is the use of polyfunctional inorganic molecules or molecular clusters as initiators. Received July 28, 2000. Accepted August 7, 2000  相似文献   

7.
Rodlike capsules consisting of a calcium carbonate core and a crosslinked polystyrene shell were synthesized, and the glass transition temperature (Tg) and characteristic length of the glass transition ξ(Tg) for the thin outer shells were investigated by temperature‐modulated differential scanning calorimetry. The shell thickness ranged from 20 to 129 nm. The ratio of the Tg for the outer shell to the bulk Tg increases with decreasing shell thickness d. The d‐dependence of Tg is interpreted in terms of a simple two‐layer model which assumes that an immobile layer exists near the core‐shell interface. Shells of hollow capsules unexpectedly exhibit a similar d‐dependence of Tg to that for the filled capsules. This is characteristic of the crosslinked polymeric shells, and is attributed to certain spatial heterogeneity of crosslink distribution, and/or to the unstable configuration in the ultrathin shell that does not undergo relaxation due to the crosslink. The latter idea is based on the assumption that unstable configurational state is responsible for the Tg shift from the bulk value observed for nanosized polymeric materials. The ratio of the characteristic length for the shell of the filled capsule to that of the bulk ξf(Tg)/ξb(Tg) decreases with decreasing d. The results are interpreted in terms of the configurational entropy, and it is also suggested that the configurational state of network polymer chains in the shell affects the characteristic length. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2116–2125, 2008  相似文献   

8.
Optical properties of polymer microspheres with polystyrene cores and polyglycidol-enriched shells poly(styrene/α-tert-butoxy-ω-vinylbenzyl-polyglycidol) (P(S/PGL) particles with number average diameters D n determined by scanning electron microscopy equal 237 and 271 nm), were studied before and after immobilization of ovalbumin. The particles were synthesized by emulsifier-free emulsion copolymerization of styrene and polyglycidol macromonomer (poly(styrene/α-tert-butoxy-ω-vinylbenzyl-polyglycidol)) initiated with potassium persulfate. Molar fraction of polyglycidol units in the interfacial layer of the microspheres determined by XPS was equal 42.6 and 34.0%, for the particles with D n equal 137 and 271 nm, respectively. Colloidal crystals from the aforementioned particles were prepared by deposition of particle suspensions on the glass slides and subsequent evaporation of water. It was found that optical properties of colloidal crystals from the P(S/PGL) microspheres strongly depend on modification of their interfacial layer by covalent immobilization of ovalbumin. The coating of particles with ovalbumin resulted in decreasing their refractive index from 1.58 to 1.52.  相似文献   

9.
Magnetic NiFe particles were synthesized through hydrothermal method using hydrazine as reductant. Composite particles with core-shell structure were further achieved by depositing silicon dioxide generated via carbonation decomposition of sodium silicate solution on the surface of magnetic cores. Characterized by XRD, the Ni9Fe particles are of fcc-type structure, and the structure of magnetic cores in composite particles was maintained despite being covered by SiO2 shell. The existence of SiO2 shells in the composite particles were demonstrated by SEM, EDS and IR. The results from TG and VSM indicated that the shell structure affected the physiochemical properties. The composite particles exhibited remarkable resistance to oxidation in comparison with Ni9Fe particles due to being protected by SiO2 shell. Meanwhile, both of them are soft magnetic materials, but Ms, Mr and Hc in Ni9[email protected]2 particle decreased compared with magnetic NiFe particles. The formation mechanisms of Ni9Fe micro-particles and composite Ni9Fe particles were discussed.  相似文献   

10.
We developed a process to fabricate 150-700 nm monodisperse polymer particles with 100-500 nm hollow cores. These hollow particles were fabricated via dispersion polymerization to synthesize a polymer shell around monodisperse SiO(2) particles. The SiO(2) cores were then removed by HF etching to produce monodisperse hollow polymeric particle shells. The hollow core size and the polymer shell thickness, can be easily varied over significant size ranges. These hollow polymeric particles are sufficiently monodisperse that upon centrifugation from ethanol they form well-ordered close-packed colloidal crystals that diffract light. After the surfaces are functionalized with sulfonates, these particles self-assemble into crystalline colloidal arrays in deionized water. This synthetic method can also be used to create monodisperse particles with complex and unusual morphologies. For example, we synthesized hollow particles containing two concentric-independent, spherical polymer shells, and hollow silica particles which contain a central spherical silica core. In addition, these hollow spheres can be used as template microreactors. For example, we were able to fabricate monodisperse polymer spheres containing high concentrations of magnetic nanospheres formed by direct precipitation within the hollow cores.  相似文献   

11.
A new model of colloidal gold (CG) bioconjugates is proposed. The model consists of a gold core and a primary polymer shell formed during conjugate synthesis. Additionally, the conjugate includes a secondary shell formed during its interaction with target molecules. Each of the inhomogeneous shells is modeled by the arbitrary number of discrete layers. Using Mie theory for multilayered spheres, we calculated the extinction and static light scattering (SLS, at 90°) spectra, as well as differential spectra A(), I() describing the effects of primary and secondary shells. Our calculations are performed for the conjugates with gold particle diameters d = 10–160 nm and two 5-nm shells. The primary shell consists of two 2.5-nm layers with the refractive indices of 1.50 and 1.45; the secondary shell, of two 2- and 3-nm layers with the refractive indices of 1.45 and 1.40. The differential spectra are related to the adsorption of target molecules and possess a characteristic resonance that is shifted to the red region of spectra compared to the usual localized plasmon resonances of gold particles. The maximal values of differential resonances A max and I max are observed for gold particles with diameters about 40–60 nm (extinction spectra) or 70–90 nm (the SLS spectra). The adsorption of human gamma-globulin (hIgG) and gelatin onto 15- and 34-nm gold particles was studied using the SLS and extinction spectra in combination with the dynamic light scattering measurements. It is shown that the thickness of adsorbed layer is equal to 5–6 nm for hIgG and to 15–18 nm for gelatin. The experimental extinction and SLS spectra for CG + hIgG conjugates are well explained by a simple model with the gold core and homogeneous polymer coating. For the CG + gelatin conjugates, we used the new model with inhomogeneous polymer coating, which is modeled by 10 discrete layers with the total thickness of 16–18 nm and exponential spatial profile of shell refractive index.  相似文献   

12.
In order to develop the seeded dispersion polymerization technique for the production of micron-sized monodispersed core/shell composite polymer particles the effect of polymerization temperature on the core/shell morphology was examined. Micron-sized monodispersed composite particles were produced by seeded dispersion polymerizations of styrene with about 1.4-μm-sized monodispersed poly(n-butyl methacrylate) (Pn-BMA) and poly(i-butyl methacrylate) (Pi-BMA) particles in a methanol/water (4/1, w/w) medium in the temperature range from 20 to 90 °C. The composite particles, PBMA/polystyrene (PS) (2/1, w/w), consisting of a PBMA core and a PS shell were produced with 2,2′-azobis(4-methoxy-2,4-dimethyl valeronitrile) initiator at 30 °C for Pn-BMA seed and with 2,2′-azobis(isobutyronitrile) initiator at 60 °C for Pi-BMA seed. The polymerization temperatures were a little above the glass-transition temperatures (T g) of both Pn-BMA (20 °C) and Pi-BMA (40 °C). On the other hand, when the seeded dispersion polymerizations were carried out at much higher temperatures than the T g of the seed polymers, composite particles having a polymeric oil-in-oil structure were produced. Received: 14 October 1998 Accepted in revised form: 2 June 1999  相似文献   

13.
Gold nanoparticles have been conformally coated with amorphous silica (using a sol-gel method) and then an organic polymer (via surface-grafted, atom transfer radical polymerization) to form spherical colloids with a core-double-shell structure. The thickness of silica and polymer shells could be conveniently controlled in the range of tens to several hundred nanometers by changing the concentration of the reagent and/or the reaction time. Selective removal of the silica layer (through etching in aqueous HF) led to the formation of hollow polymer beads containing movable gold cores. This new form of core-shell particles provides a unique system for measuring the feature size and transport property associated with hollow particles. In one demonstration, we showed that the thickness of a closed polymer shell could be obtained by mapping the electrons backscattered from the core and shell. In another demonstration, the plasmon resonance band of the gold cores was used as an optical probe to follow the diffusion kinetics of chemical reagents across the polymer shells.  相似文献   

14.
《Chemical physics letters》2003,367(5-6):561-565
Core–shell structured micron-scale spheres of titanium oxide and carbide were prepared by the controlled in-flight oxidation of a powder of irregularly shaped titanium-carbide particles in an argon–oxygen thermal plasma. Mono-dispersed core–shell particles with rutile shells and TiC cores were formed by an intermediate-rate input of oxygen to the plasma gas. The partial oxidation of the TiC particles in the liquid phase was accompanied by spheroidization of the surface oxide melt, thus giving rise to a core–shell composite under rapid quenching. TiO2–TiC core–shell composites have potential as new materials for roles such as light-scattering media, photo-catalysts, and electro-rheorogical fluids.  相似文献   

15.
Abstract

Functional latexes with poly(methyl methacrylate) (PMMA) cores and amino‐containing, water‐soluble polymer shells were synthesized via direct graft copolymerization of methyl methacrylate from water‐soluble polymers induced by a small amount of tert‐butyl hydroperoxide (TBHP) at 80°C for 2 h. Amphiphilic graft copolymers and PMMA homopolymers were generated concurrently to form highly monodispersed latexes. The effects of water‐soluble polymer containing different amino group, reaction temperature, TBHP concentration, molecular weight of the polymer and pH of the solution on conversion and grafting efficiency of the monomer and particle size were investigated. Transmission electron microscopic images of the PMMA/poly(ethyleneimine) (PEI) and PMMA/poly(allylamine) (PAA) particles clearly show well‐defined core‐shell morphologies, where PMMA cores are coated with either PEI or PAA shell. The amino‐containing polymer shells were also confirmed with zeta‐potential measurements. Furthermore, the amino‐containing latexes can be produced with a solids content up to 22 wt.%. Thus, this method provides a commercially viable route to functional latexes.  相似文献   

16.
Microcapsules containing phase change materials (microPCMs) with melamine-formaldehyde (MF) shells have been applied in many thermo-regulation or thermo-saving fields. However, it is still essential to decrease the residual formaldehyde and enhance the mechanical properties of MF shells. The objective of this work was to fabricate a series of microPCMs containing paraffin by an in situ polymerization method using methanol-modified melamine-formaldehyde (MMF) prepolymer as shell material and investigate the physicochemical properties and mechanical characters of these microPCMs. FT-IR analysis indicates that the methanol-modified method can reduce the free formaldehyde in shell material through increasing the cross-linking structure. Optical microphotographs and SEM morphologies show that the microPCMs have regular globe shape with smooth surface. With the increasing of emulsion stirring rates from 1,000 to 5,000 rpm, the average diameters decreased sharply from 27 to 2.5 μm. The phase change temperature (T m) of microPCMs samples with the core/shell ratios of 3/1, 2/1, 1/1, and 2/1 are 22.6, 23.0, 23.4, and 23.9 °C, which are nearly equaled to the T m of pure paraffin (22.5 °C). Mechanical properties test data show that the MMF shells have larger yield point value than that of MF shell for microPCMs with the same core/shell ratio, which means that the methanol-modified method shell can greatly enhanced the resistance of deformation for MF shells. Moreover, MMF shells can resist the interface extrusion force in epoxy resin owing to their higher yield point of enhanced MMF shell.  相似文献   

17.
Microencapsulated phase change materials (MePCMs) using melamine–formaldehyde resin/SiO2 as shell were investigated in this paper. Organically modified SiO2 particles were employed to stabilize Pickering emulsion, and in situ polymerization of melamine and formaldehyde was carried out to form hybrid shell. The performances of resultant MePCMs with hybrid shell were investigated comparatively with the MePCMs with polymer shell. SiO2 particles raise the microencapsulation efficiency by improving the stability of emulsion and providing a precipitation site for melamine–formaldehyde resin. Also, the mechanical strength, thermal reliability, and anti‐osmosis performance of MePCMs were improved significantly by SiO2 particles in the shell. Our study shows that Pickering emulsion is a simple and robust template for MePCMs with polymer‐inorganic hybrid shell. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
Glass transition of core/shell capsules consisting of calcium carbonate whisker as a core and crosslinked polystyrene as a shell was studied by differential scanning calorimetry. The thickness of the crosslinked shell was in the range of 26–81 nm. The crosslinked shells were revealed to show higher glass transition temperatures (Tg) than the corresponding bulk values. It was revealed that a thicker shell exhibits a lower Tg than a thinner shell, and that capsules without core (hollow capsules) exhibit lower Tg's than the corresponding core/shell capsules. These results suggest that the interfacial molecular interaction plays a role in the segmental relaxation, which is responsible for the glass transition. The difference in Tg between the core/shell and hollow samples was reduced when a coupling agent, methacrylic acid 3‐(trimethoxysilyl)propyl ester, was not included. This also suggests the interfacial effect on Tg. However, the results still suggest that the enhancement of Tg for the present crosslinked shells is not only due to the interfacial effect but also to the effects of chain configuration and heterogeneous crosslink. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 2475–2485, 2006  相似文献   

19.
Thermoresponsive microgels consisting of poly(N-isopropylacrylamide) cores and poly(N-isopropylmethacrylamide) shells cross-linked with the hydrolytically degradable cross-linker N,O-dimethacryloyl hydroxylamine were synthesized. Their swelling and erosion properties were characterized using a variety of analytical tools including dynamic light scattering, asymmetrical flow field-flow fractionation–multiangle light scattering, and atomic force microscopy. Shell addition leads to particle densification due to the added polymer and the mechanical, compressive force applied by the shell. Upon hydrolytic degradation of the shell cross-links, mechanical and chemical changes occur throughout the core and shell, leading to softer and more porous shells that permit greater core swelling. Such changes, which are triggered on exposure to physiologic conditions, are of potential utility within the realm of triggered drug delivery.  相似文献   

20.
A novel method of fabricating composite particles with core–shell structures is demonstrated. The particles comprised monodisperse submicrometer-sized copolymer latex spheres as cores and Fe2O3 crystallites as shells. The shell was formed by controlled hydrolysis of aqueous iron solutions, and the growth of hematite on the surface of the copolymer spheres was controlled by slow injection. Hollow spheres were obtained by calcinations of the so-coated copolymer lattices at 500°C in air. The void size of these hollow spheres was determined by the diameter of the copolymer template, and the wall thickness could be easily controlled in the range of 20–60 nm by using this coating process. The structure and the composition of the spheres were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and thermogravimetric analysis (TGA). It can be seen that a crystallite change and a crystal phase transformation occurred during coating and calcination of the composite spheres. The formation of the composite particles is simply explained by the nucleation of iron oxide on the surface of the latex followed by growth of the iron compound shell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号