首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Effect of silver introduction in sodium phosphate and sodium borophosphate glasses containing large amount of niobium oxide have been investigated using differential scanning calorimetry and XRD. Same sodium niobate phase in the Nb2O5-NaNbO3 based solid solution have been observed following two heat treatments designed for nucleation and growth of the crystalline phase. Silver introduction in the glass composition is clearly responsible for increasing the crystallization rate. Its effect after nucleation and crystallization treatments has been shown. Phase metastable separation is occurring during heat treatment with formation of a phosphate rich and niobium rich phase. Crystallization effect on optical transparency of glasses and on Raman scattering response have been investigated.  相似文献   

2.
Deposition of electrochromic niobium(V) oxide films from an acidic solution of niobium peroxo complexes on a transparent conducting cathode in the form of an SnO2 film on glass was studied. With an increase in the negative potential of the deposition of niobium(V) oxide films from a solution of niobium peroxo complexes at pH 2.5, the structure and composition of the films changed. A study of the electrochromic properties of Nb2O5 films revealed broadening of the bands in the electrochromic coloration spectrum with an increase in the negative potential of the deposition.  相似文献   

3.
A new process has been developed for the synthesis of nanocrystalline niobium oxide and niobium diboride using an amorphous niobium precursor obtained via the solvothermal route. On varying the ratio of niobium precursor to boron and the reaction conditions, pure phases of nanostructured niobium oxides (Nb(2)O(5), NbO(2)), niobium diboride (NbB(2)) and core-shell nanostructures of NbB(2)@Nb(2)O(5) could be obtained at normal pressure and low temperature of 1300 °C compared to a temperature of 1650 °C normally used. The above borothermal process involves the in situ generation of B(2)O(2) to yield either oxide or diboride. The niobium oxides and borides have been characterized in detail by XRD, HRTEM and EDX studies. The core-shell structure has been investigated by XPS depth profiling, EFTEM and EELS (especially to characterize the presence of boron and the shell thickness). The niobium diboride nanorods (with high aspect ratio) show a superconducting transition with the T(c) of 6.4 K. In the core-shell of NbB(2)@Nb(2)O(5), the superconductivity of NbB(2) is masked by the niobium oxide shell and hence no superconductivity was observed. The above methodology has the benefits of realizing both oxides and borides of niobium in nanocrystalline form, in high purity and at much lower temperatures.  相似文献   

4.
Anodic oxide films formed potentiostatically on niobium surfaces, from open circuit potential (OCP) to 10 V, were studied by performing in situ and ex situ ellipsometric measurements. The kinetics of the film thickness growth in 1 M H2SO4 and complex indices of refraction of these films were determined. A strong influence of the surface preparation conditions on the complex refractive indices of the metal substrate and anodic oxide films was shown. By steady-state measurements at OCP, a small thickening of the natural air-formed oxide film with chemical composition Nb2O5 in 1 M H2SO4 solution was detected. With cathodic pre-treatment, only partial reduction and small thinning of the natural air-formed oxide film was possible. The thicknesses of the natural air-formed oxide films on fine mechanically polished and electropolished Nb surfaces were determined. The build up of the natural air-formed oxide film, at ex situ conditions, on the already formed anodic oxide films was confirmed. It was shown that electropolishing gives more similar optical surface properties to the bare metal than the fine mechanical polishing. Electronic Publication  相似文献   

5.
The possibility of forming niobium oxynitride through the nitridation of niobium oxide films in molecular nitrogen by rapid thermal processing (RTP) was investigated. Niobium films 200 and 500 nm thick were deposited via sputtering onto Si(100) wafers covered with a thermally grown SiO2 layer 100 nm thick. These as-deposited films exhibited distinct texture effects. They were processed in two steps using an RTP system. The as-deposited niobium films were first oxidized under an oxygen atmosphere at 450 °C for various periods of time and subsequently nitridated under a nitrogen atmosphere at temperatures ranging from 600 to 1000 °C for 1 min. Investigations of the oxidized films showed that samples where the start of niobium pentoxide formation was detected at the surface and the film bulk still consisted of a substoichiometric NbOx phase exhibited distinctly lower surface roughness and microcrack densities than samples where complete oxidation of the film to Nb2O5 had occurred. The niobium oxide phases formed at the Nb/substrate interface also showed distinct texture. Zones of niobium oxide phases like NbO and NbO2, which did not exist in the initial oxidized films, were formed during the nitridation. This is attributed to a “snow-plough effect” produced by the diffusion of nitrogen into the film, which pushes the oxygen deeper into the film bulk. These oxide phases, in particular the NbO2 zone, act as barriers to the in-diffusion of nitrogen and also inhibit the outdiffusion of oxygen from the SiO2 substrate layer. Nitridation of the partially oxidized niobium films in molecular nitrogen leads to the formation of various niobium oxide and nitride phases, but no indication of niobium oxynitride formation was found. Figure Schematic representation of the phase distribution in 200 nm Nb film on SiO2/Si substrate after two steps annealing using an RTP system. The plot below represents the SIMS depth profiles of the nitridated sample with the phase assignment  相似文献   

6.
Alkaline niobium(V) solutions containing up to 190 g l−1 of niobium oxide were prepared by sintering niobium(V) oxide with potassium carbonate and following leaching of the sinters with water.  相似文献   

7.
Powders and thin films of barium sodium niobate, Ba4Na2Nb10O30, of filled tungsten bronze type ferroelectric were processed by a sol-gel route using barium metal, niobium ethoxide and sodium methoxide as precursors. Polycrystalline powder resulted after heat treating the gel powder at or above 650°C. Thin films of Ba4Na2Nb10O30 showed no preferred orientation on Si(100), Pt/Si(100) and sapphire substrates. Hysteresis measurements at 1 kHz for the thin films annealed at 750°C, obtained using a prehydrolyzed precursor solution, and gave remanent polarization of 17.34 µC/cm2 and coercive field of 62.5 kV/cm. Microstructural investigation of surface morphology of these films revealed grains about 0.3 µm in size. Prehydrolysis of the precursor solution was found to be necessary to achieve dense films with ferroelectric properties.  相似文献   

8.
The oxidation and nitridation processes of niobium films in a rapid thermal processing (RTP) – system were investigated. 200 and 500 nm niobium films were deposited via sputtering on sapphire-(1-102)-substrate. At first niobium films were oxidized in molecular oxygen at temperatures ranging from 350 to 500 °C and for times of 1, 2 and 5 min and then nitridated in ammonia at 1000 °C for 1 min using an RTP system. For characterisation of the niobium films complementary analytical methods were used: X-ray diffraction (XRD) for phase analysis, secondary ion mass spectrometry (SIMS) for determining the elemental depth profiles of the films, scanning electron microscopy (SEM) and atomic force microscopy (AFM) for characterisation of the surface morphology of the films. The influence of the substrate, single crystalline sapphire, on the reactivity of the niobium films was studied in dependence of temperature, time of reaction and film thickness. The possibility of existence of niobium oxynitride phase was investigated. According to XRD and SIMS data, there is evidence that an oxynitride phase is formed after oxidation and subsequent nitridation in the bulk of some Nb films. In some of the experiments crack formation in the films or even delamination of the Nb films from the substrates was observed.  相似文献   

9.
Delayed ignition of combustion synthesis precursors can significantly lower metal oxide film formation temperatures. From bulk In(2)O(3) precursor analysis, it is shown here that ignition temperatures can be lowered by as much as 150 °C. Thus, heat generation from ~60 nm thick In(2)O(3) films is sufficient to form crystalline In(2)O(3) films at 150 °C. Furthermore, we show that the low processing temperatures of sufficiently thick combustion precursor films can be applied to the synthesis of metal oxide nanocomposite films from nanomaterials overcoated/impregnated with the appropriate combustion precursor. The resulting, electrically well-connected nanocomposites exhibit significant enhancements in charge-transport properties vs conventionally processed oxide films while maintaining desirable intrinsic electronic properties. For example, while ZnO nanorod-based thin-film transistors exhibit an electron mobility of 10(-3)-10(-2) cm(2) V(-1) s(-1), encasing these nanorods within a ZnO combustion precursor-derived matrix enhances the electron mobility to 0.2 cm(2) V(-1) s(-1). Using commercially available ITO nanoparticles, the intrinsically high carrier concentration is preserved during nanocomposite film synthesis, and an ITO nanocomposite film processed at 150 °C exhibits a conductivity of ~10 S cm(-1) without post-reductive processing.  相似文献   

10.
The electronic structure, experimental Compton profile and the chemical bonding mechanism of niobium carbide and niobium nitride are studied on the basis of the band structure calculations, using a self-consistent, all-electron, linear combination of Gaussian orbitals (LCGO) calculation based on density functional theory. Isotropic Compton profiles of niobium carbide have been measured, using a conventional technique based on 59.54 keV gamma-radiation with a solid state detector. The agreement between the experimental and the theoretical momentum density is very good. It is shown that the anisotropies at low momentum are heavily influenced by the particular shape of the Fermi surface. The charge distributions resulting from valence bands in different regions of the unit cell are discussed. The limitations of the rigid band structure model are illustrated and general trends in the chemical bonding are discussed.  相似文献   

11.
High-quality TiO2 thin films have been deposited from aqueous titanium-peroxo solutions via spin coating. The effects of precursor solution pH on the crystallization behavior, morphology, density, and refractive index of the films are reported. From X-ray diffraction measurements, the amorphous as-deposited films are found to crystallize in the anatase phase at 250 °C. Surface and cross-section SEM images reveal that films deposited from an acidic precursor are more uniform and denser than those deposited from a basic precursor. X-ray reflectivity measurements show that films with smooth surfaces and high densities (up to 87% of single-crystal anatase) can be produced at temperatures as low as 300 °C. Measured densities are consistent with high refractive indices at 633 nm of 2.24 and 2.11 for films derived from acidic and basic precursors, respectively. The uniformity and dense nature of the films have allowed fabrication of multilayer dielectric optical elements with thermal processing at only 300 °C. The distributed Bragg reflector with four bilayers exhibits a reflectance of 92% and a stop band width of 150 nm. The optical microcavity has a quality factor of 20. The optical properties of all elements agree well with theoretical models, indicating good optical quality. Use of the precursor chemistry for direct photopatterning of TiO2 films without a polymer resist is also demonstrated.  相似文献   

12.
Nanocrystalline Nb2O5 films were prepared by an extended sol-gel method. The synthesis is based on the hydrolysis of a modified Nb-alkoxide precursor. Reaction of the modified precursor (Nb(OEt)5 + 2 2,4-pentanedione) with water in ethanol leads to a homogeneous hydrolyzed solution, which is stable against precipitation of niobium oxide after evaporation of the ethanol and in the whole pH-range investigated (1–10). Autoclaving leads to amorphous gels, from which homogeneous nanocrystalline niobium oxide films of up to 15 m can be made. During annealing crystalline phases are first observed above 500°C with fully crystalline films of orthorhombic T-phase Nb2O5 attained at 600°C. The microstructural, crystallographic, optical and photoelectrical properties of the films were characterized by means of SEM, XRD, UV-VIS spectroscopy and surface photovoltage spectroscopy, respectively.  相似文献   

13.
Transparent aqueous sols of colloidal tetramethylammonium niobate nanocrystals were synthesized by mixing tetramethylammonium hydroxide (TMAOH), niobium ethoxide, and water at TMAOH/Nb≥0.7 at room temperature. The X-ray diffraction patterns of the thin films prepared by evaporating the colloidal solutions on a glass substrate indicated that the colloidal niobate had a layered crystalline structure. Two types of layered structures are known as a layered niobate, i.e. M(4)Nb(6)O(17)·nH(2)O and MNb(3)O(8) (M=H, H(3)O, or alkaline metal). Raman spectra and electron diffraction suggested that the niobate nanocrystals were similar in crystal structure to M(4)Nb(6)O(17)·nH(2)O compounds. Moreover, when niobium oxide thin films were fabricated from the niobate colloidal solutions by the sol-gel method, oriented T-Nb(2)O(5) thin films, whose c-axis was parallel to the substrate surface, were obtained. The orientation of the thin films was probably attributed to the layered structure of the colloidal niobate nanocrystals.  相似文献   

14.
By electron beam evaporation and RF magnetron sputtering 500 nm thick niobium films were deposited on thermally oxidized Si-(100)-wafers and by RF magnetron sputtering on monocrystalline sapphire-(1-102)-wafers. Investigations by scanning electron microscopy (SEM) and atomic force microscopy (AFM) revealed differences of the film morphology depending on the substrate used: films deposited on SiO2 exhibited an even surface with small crystallites, films on sapphire showed parallel surface structures with relatively large and well-shaped crystallites pointing at regular crystal growth influenced by the substrate. These differences in film morphology were also reflected in different reflection intensities of the films in XRD patterns, indicating that the films deposited on sapphire were strongly textured. In a first set of experiments nitridation in molecular nitrogen and ammonia was investigated. In a second set of experiments, it was tried to form oxynitrides of niobium by annealing the nitrided films in molecular oxygen. Particularly by X-ray-diffraction the formation of different nitride and oxide phases in dependence of the reaction temperature was examined. Further, elemental depth profiles were recorded by secondary ion mass spectrometry (SIMS) to track the position of the phases formed in the film. The different substrates led to disparate film reactivities, resulting in different nitridation grades of the films at similar reaction temperatures. In general, larger crystallite sizes resulted in less chemical reactivity of the films: even after nitridation at 1000 °C metallic niobium was still present in films deposited on sapphire. However, no evidence was obtained for the formation of oxynitrides by the process sequence observed.  相似文献   

15.
Ascidians have been reported to absorb many unusual elements, including niobium. A study of some aqueous niobium(V) chemistry is used to identify potential ligating systems. It is proposed from the inorganic chemical evidence that these marine organisms may concentrate other early second and third row transition elements.  相似文献   

16.
A statistical route, Taguchi Design, applied to the analysis of experimental factors for coating lanthanum zirconium oxide films on metal substrates by inkjet printer is presented. The synthesis of lanthanum zirconium oxide precursor is derived from a chemical solution containing lanthanum acetate hydrate, zirconium propoxide, propionic acid, glacial acetic acid, and methanol anhydrous. Experimental factors analyzed by Taguchi Design show that the ratio of lanthanum acetate to propionic acid and the concentration of precursor used for inkjet printing are the dominant factors for the quality of films. With the deduced optimum conditions, lanthanum zirconium oxide films reveal good surface morphology and high out-of-plane alignment that is consistent with the Taguchi prediction.  相似文献   

17.
Photochemistry has emerged in the last few years as a powerful tool for the low-temperature processing of metal oxide thin films prepared by solution methods. Today, its implementation into the fabrication procedure makes possible the integration of amorphous semiconductors or functional crystalline oxides into flexible electronic systems at temperatures below 350 °C. In this review, the effects of UV irradiation at the different stages of the chemical solution deposition of metal oxide thin films are presented. These stages include from the synthesis of the precursor solution to the formation of the amorphous metal-oxygen network in the film and its subsequent crystallization into the oxide phase. Photochemical reactions that can be induced in both the solution deposited layer and the irradiation atmosphere are first described, highlighting the role of the potential reactive chemical species formed in the system under irradiation, such as free radicals or oxidizing compounds. Then, the photochemical effects of continuous UV light on the film are shown, focusing on the decomposition of the metal precursors, the condensation and densification of the metal-oxygen network, and the nucleation and growth of the crystalline oxide. All these processes are demonstrated to advance the formation and crystallization of the metal oxide thin film to an earlier stage, which is ultimately translated into a lower temperature range of fabrication. The reduced energy consumption of the process upon decreasing the processing temperature, and the prospect of using light instead of heat in the synthesis of inorganic materials, make photochemistry as a promising technique for a sustainable future ever more needed in our life.  相似文献   

18.
Crystallization of glasses with compositions (1−x)(0.95 NaPO3+0.05 Na2B4O7)+xNb2O5, x=0.4, 0.43, 0.45, 0.48 was investigated by differential scanning calorimetry and X-ray powder diffraction. Crystallization of two phases was observed in the glasses with x=0.43-0.48. First phase is a sodium niobate with the structure of tetragonal tungsten bronze () and second phase is Na4Nb8P4O32 (). The crystallization of sodium niobate is correlated with increasing of nonlinear optical efficiency reported for thermally poled glasses with x>0.4. The results of Raman spectroscopy show the formation of three-dimensional (3D) niobium oxide framework in the glasses with increase of niobium concentration. This framework is supposed to have tetragonal tungsten bronze structure and to be responsible for nonlinear optical properties of the glass. Second harmonic generation signals of as prepared and crystallized glass after thermal poling are compared. The nucleation and crystallization do not improve the NLO properties of the glasses under study.  相似文献   

19.
The niobium and tantalum anodic oxidation is studied using electrochemical methods in a ionic liquid, 1-butyl-3-methylimidazolium bromide (BMImBr), containing water admixtures. It is found that resistive oxide layers are formed on the metal surface in the polarization process and their growth follows the complicated parabolic or inverse logarithmic laws. It is shown that under the given conditions, the chemical stability of oxide layers on niobium is considerably lower than that on tantalum.  相似文献   

20.
An effective chemical route to nanostructured tungsten oxide films derived from a peroxopolytungstic acid (PTA)/thiourea precursor solution is demonstrated. The conventional procedure of preparing the precursor needs more than 24 h for well‐mixing and refluxing the PTA‐based solution, while the thiourea‐assisted approach takes less than 1 h to prepare the precursor solution because the excess hydrogen peroxide can be efficiently eliminated by oxidation of thiourea. With the precursor solution, tungsten oxide films are deposited by spin coating followed by high temperature annealing. The film annealed at 400 °C possesses a porous nanostructure of nanocrystalline tungsten oxide embedded in an amorphous tungsten oxide matrix, which arises from the gaseous species released through decomposition of thiourea oxides during annealing. The 400 °C‐annealed, thiourea‐assisted tungsten oxide film exhibits electrochromic (EC) properties superior to those of the film prepared without thiourea, including large transmittance modulation and coloration efficiency, fast response time and adequate reliability. When increasing the annealing temperature to 450 °C, the thiourea‐assisted tungsten oxide film is also porous but well‐crystallized and shows inferior EC properties. Electrochemical impedance spectroscopy analysis indicates that, in addition to the porous structure, a fast charge‐transport rate within the solid portion of the 400 °C‐annealed nanostructured film plays a crucial role in enhancing EC performances of the thiourea‐assisted tungsten oxide film.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号