首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nanorods of orthorhombic V3O7 · H2O with the parameters a = 16.805 Å, b = 9.428 Å, and c = 3.660 Å are prepared under hydrothermal conditions (T = 180–190°C, τ = 30–40 h) from the V2O5 · nH2O/H2C2O4 · 2H2O composite. The particle diameter is 40–70 nm, and the length is several micrometers. The IR spectra, electric conductivity, and thermal properties of the nanorod powder are studied. In air V3O7 · H2O begins to decompose at temperatures above 150°C, and at 350°C nanobelts V2O5 40–100 nm wide and 40 µm long are formed. A mechanism of nanostructure formation is suggested.  相似文献   

2.
By the hydration of MVO(SeO4)2 with saturated water vapors at room temperature a series of isostructural complex compounds of vanadium(V) of the composition M[VO2(SeO4)(H2O)2]·H2O (K, Rb, NH4) are synthesized and their physicochemical properties are studied. Based on the X-ray and neutron diffraction data, it is found that their crystal structure is composed of VO6 octahedra linked in infinite chains by bridging SeO4 tetrahedra. Each of the VO6 octahedra has two short terminal V-O bonds forming a bent dioxovanadium group VO2+. Two water molecules are coordinated by vanadium and one molecule is out of the first coordination sphere in the interchain space. The vibrational spectra of the studied compounds are completely consistent with their structural features.  相似文献   

3.
4.
Single crystals of M[UO2(C2O4)(NCS)] · 0.5H2O (M = Rb (I) or Cs (II)) have been synthesized and studied by X-ray diffraction analysis. The compounds are isostructural, and their crystals are monoclinic with the space group C2/c, Z = 4, and unit cell parameters: a = 9.0624(5) Å, b = 13.1242(7) Å, c = 8.9204(5) Å, β = 98.897(2)°, R = 0.0226 (I); a = 9.3171(3) Å, b = 13.2987(5) Å, c = 9.1151(3) Å, β = 101.0860(10)°, R = 0.0214 (II). The main structural units of the crystals of I and II are the [[UO2(C2O4)(NCS)]? chains belonging to the crystal-chemical group AK02M1 (A = UO 2 2+ , K02 = C2O 4 2? , M1 = NCS? of the uranyl complexes. The uranium-containing chains are joined into a three-dimensional framework through electrostatic interactions with the outer-sphere cations and hydrogen bonds involving the water molecules.  相似文献   

5.
The magnesium heteropoly compound (NH4)4[MgMo6O18(OH)6] · 5H2O (I) has been synthesized and studied by mass spectrometry, IR spectroscopy, X-ray powder diffraction, and thermogravimetry. Crystals of I are monoclinic, space group P21/n, a = 15.10 Å, b = 11.64 Å, c = 13.53 Å, β = 74.28°, V = 2289.31 Å3, ρcalc = 1.09 g/cm3, Z = 1.  相似文献   

6.
Single crystals of Li(H3O)[UO2(C2O4)2(H2O)] · H2O (I) have been synthesized and studied by X-ray diffraction. Compound I crystallizes in the monoclinic crystal system with the unit cell parameters: a = 7.1682(10) Å, b = 29.639(6) Å, c = 6.6770(12) Å, β= 112.3(7)°, space group P 21/c, Z = 4, R = 4.36%. Structure I contains discrete mononuclear groups [UO2(C2O4)2(H2O)]2? ascribed to the crystal-chemical group AB 2 01 M1 (A = UO2 2+, B01 =C2O 4 2? , M1 = H2O), which are “cross-linked” by the lithium ions into infinite layers {Li(UO2)(C2O4)2(H2O)2}? perpendicular to [010]. The hydroxonium ions are located between adjacent uranium-containing layers. A hydrogen bond system involving water molecules, oxalate ions, and hydroxonium combines the anionic layers into a three-dimensional framework.  相似文献   

7.
Single crystals of the Na4[Na2Cr2(C2O4)6] · 10H2O complex were synthesized for the first time. The structure of the complex was determined by X-ray diffraction analysis. The compound crystallizes in the monoclinic crystal system with the unit cell parameters a = 17.290(4) Å, b = 12.521(3) Å, c = 15.149(3) Å, β = 100.45(3)°, Z = 4, space group Cc. Anionic layers [NaCr(C2O4)3] 2n 4n? can be distinguished in the crystal structure of the complex. The Na+ cations and water molecules, involved in the formation of a hydrogen bond network, are located between the anionic layers.  相似文献   

8.
Double complex salts (DCS) [RuNO(NH3)4(H2O)]2[MCl4]Cl4·2H2O, M = Pt (I) and Pd (II), are prepared and characterized using IR spectroscopy, single crystal and powder X-ray diffraction, and thermogravimetric analysis. Crystalline phases of I and II are isostructural (P2(1)/n space group) and have the following crystallographic characteristics: a = 6.689 Å, b = 15.609 Å, c = 12.348 Å, V = 1289.1 Å3, Z = 2, d x = 2.425 g/cm3 (I) and a = 6.637 Å, b = 15.521 Å, c = 12.244 Å, V = 1261.2 Å3, Z = 2, d x = 2.255 g/cm3 (II). The thermolysis of the obtained DCS in the hydrogen atmosphere affords two-phase mixtures of limited solid solutions of the metals: hcp for ruthenium-based ones and fcc for Pt or Pd based solutions. On decomposition in the helium atmosphere the products contain a minor amount of RuO2. For the phases obtained during thermolysis the parameters are determined and the compositions are estimated. The heating of I to 400°C in the helium-air atmosphere yields a nanocrystalline composite Pt+RuO2 with CSR of ~20 nm.  相似文献   

9.
Binuclear iron nitrosyl complex Na2[Fe2(S2O3)2(NO)4] · 4H2O (I) was synthesized by the reaction of iron(II) sulfate with sodium thiosulfate in the flow of NO gas. According to X-ray diffraction data, the [Fe2(S2O3)2(NO)4]2– anion has binuclear centrosymmetric structure with Fe atoms bonded by the µ-S atoms of thiosulfate groups. The isomeric shift for complex I =0.168(1) mm/s and quadrupole splitting E Q =1.288 mm/s at T=80 K. When heated, complex I transforms to Na2[Fe2(S2O3)2(NO)4] (II), whose unit cell parameters found by X-ray diffraction method differ from those of complex I. The process of transformation of I to II was studied by calorimetric method. Complex I transforms to complex II without chemical decomposition, which was confirmed by IR and mass spectroscopy data.__________Translated from Koordinatsionnaya Khimiya, Vol. 31, No. 5, 2005, pp. 323–328.Original Russian Text Copyright © 2005 by Sanina, Aldoshin, Rudneva, Golovina, Shilov, Shulga, Martynenko, Ovanesyan.  相似文献   

10.
The complex Na3(NH4)2[Ir(SO3)2Cl4]·4H2O was examined with single crystal X-ray diffraction and IR spectroscopy. Crystal data: a = 7.3144(4) Å, b = 10.0698(5) Å, c = 12.3748(6) Å, β = 106.203(1)°, V = 875.26(8) Å3, space group P21/c, Z = 2, d calc = 2.547 g/cm3. In the complex anion two trans SO 3 2? groups are coordinated to iridium through the S atom. The splitting of O-H bending vibrations of crystallization water molecules and N-H ones of the ammonium cation is considered in the context of different types of interactions with the closest neighbors in the structure.  相似文献   

11.
A novel binuclear Cobalt(II) complex with N-(2-propionic acid)-salicyloyl hydrazone (C10H10N2O4, H3L) was prepared and characterized. The crystal structure of [Co(C10H9N2O4)2] · 3H2O was determined by X-ray single-crystal diffractometry. The Co2+ ion is six-coordinated by the carboxyl and acyl O atoms and azomethine N atoms of two tridentate N-(2-propionicacid)-salicyloyl hydrazone ligands, which form two stable five-numbered rings sharing one side in the keto form. The coordination environment around the Co2+ ion might be described as a distorted octahedron. Abundant hydrogen bonds of the types O-H…N and O-H…O between the water molecules and ligands not only form the three-dimensional network, but also provide an extrastability for the crystal. The complex was studied for the interaction with calf thymus DNA by electronic absorption titration and emission titration. The results show that the complex is bound to calf thymus DNA mainly by intercalation. The article is published in the original.  相似文献   

12.
Solubility and stability of (NH4)2SO4·H2O2 in organic solvents (glycerol, ethylene glycol, TOSOL-A40 OM antifreeze), in mixtures of an organic solvent and water, and in pure water was studied. Crystallographic properties of the ammonium sulfate precipitating from aqueous-organic solvents and aqueous solutions in various time intervals and differing from ordinary (NH4)2SO4 in solubility and one of crystallographic parameters were analyzed.  相似文献   

13.
The single phase NH4NiPO4·6H2O was synthesized by solid-state reaction at room temperature using NiSO4·6H2O and (NH4)3PO4·3H2O as raw materials. XRD analysis showed that NH4NiPO4·6H2O was a compound with orthorhombic structure. The thermal process of NH4NiPO4·6H2O experienced three steps, which involves the dehydration of the five crystal water molecules at first, and then deamination, dehydration of the one crystal water, intramolecular dehydration of the protonated phosphate groups together, at last crystallization of Ni2P2O7. In the DTA curve, the two endothermic peaks and an exothermic peak, respectively, corresponding to the first two steps’ mass loss of NH4NiPO4·6H2O and crystallization of Ni2P2O7. Based on Flynn–Wall–Ozawa equation, and Kissinger equation, the average values of the activation energies associated with the thermal decomposition of NH4NiPO4·6H2O, and crystallization of Ni2P2O7 were determined to be 47.81, 90.18, and 640.09 kJ mol−1, respectively. Dehydration of the five crystal water molecules of NH4NiPO4·6H2O, and deamination, dehydration of the crystal water of NH4NiPO4·H2O, intramolecular dehydration of the protonated phosphate group from NiHPO4 together could be multi-step reaction mechanisms. Besides, the thermodynamic parameters (ΔH , ΔG , and ΔS ) of the decomposition reaction of NH4NiPO4·6H2O were determined.  相似文献   

14.
The dependence of solid phase composition on the main parameters of the interaction in the CoSO4-K4P2O7-H2O system was studied. The synthesis conditions were determined and a crystalline cobalt(II) diphosphat of the composition Co2P2O7 · 6H2O was synthesized. Its thermal properties were studied. The composition and the intervals, wherein the thermally stable products of partial and complete dehydration of Co2P2O7 · 6H2O are formed, were specified. The final heat treatment product, anhydrous α-Co2P2O7, was identified and a sequence of the solid phase thermal transformations accompanying its formation was established.  相似文献   

15.
Evidence for the existence of primitive life forms such as lichens and fungi can be based upon the formation of oxalates. These oxalates form as a film like deposit on rocks and other host matrices. The anhydrous oxalate mineral moolooite CuC2O4 as the natural copper(II) oxalate mineral is a classic example. Another example of a natural oxalate is the mineral wheatleyite Na2Cu2+(C2O4)2·2H2O. High resolution thermogravimetry coupled to evolved gas mass spectrometry shows decomposition of wheatleyite at 255°C. Two higher temperature mass losses are observed at 324 and 349°C. Higher temperature mass losses are observed at 819, 833 and 857°C. These mass losses as confirmed by mass spectrometry are attributed to the decomposition of tennerite CuO. In comparison the thermal decomposition of moolooite takes place at 260°C. Evolved gas mass spectrometry for moolooite shows the gas lost at this temperature is carbon dioxide. No water evolution was observed, thus indicating the moolooite is the anhydrous copper(II) oxalate as compared to the synthetic compound which is the dihydrate.  相似文献   

16.
A new compound {[Cu(En)2]2V2O7} · 4H2O (I) (En = ethanediamine) has been synthesized by the combination of hydrothermal and solvent evaporation method and characterized by single-crystal X-ray diffraction (CIF file CCDC no. 1450218), IR, UV-Vis spectra, thermogravimetric analysis, powder X-ray diffraction, and fluorescence analysis. Crystal data for I: C8H40Cu2N8O11V2, Mr = 653.44, orthorhombic, space group Cmca, a = 18.559(11), b = 17.583(11), c = 7.600(6) Å, V = 2480(3) Å3, and Z = 4. Interestingly, two [Cu(En)2]2+ coordination cations are bridged by the [V2O7]4– unit to build up a neutral framework compound.  相似文献   

17.
The (VO)0.09V0.18Mo0.82O3 · 0.54H2O microrods of hexagonal symmetry system with the unit cell parameters a = 10.586 Å and c = 3.698 Å were obtained for the first time under hydrothermal conditions (T = 160°C, τ = 30?50 h). Particles were 1–2 μm in diameter and up to 45 μm in length. The compound is thermally stable up to 469°C. The core-electron Mo3d, V2p, and O1s and valence-band X-ray photoelectron spectra and IR spectra of the samples were studied. The molybdenum atoms in the complex oxide have the oxidation state Mo6+. The vanadium atoms introduced into the h-MoO3 lattice in molybdenum positions have the oxidation state V5+. Approximately one-third of vanadium atoms as vanadyl ions (VO)2+ are located in the channels of h-MoO3 lattice, thus stabilizing the latter.  相似文献   

18.
Synthesis and X-ray diffraction study of [UO2CrO4(C5NH5COO)] · H2O crystals were performed. The compound crystallizes in the monoclinic system with the unit cell parameters a = 7.5025(3) Å, b = 11.5188(6) Å, c = 13.0518(6) Å, β = 97.877(4)°, V = 1117.29(9) Å3, space group P21/n, Z = 4, R = 0.0263. The structure is formed by three [UO2CrO4(C5NH5COO)] layers parallel to (10\(\bar 1\)). The coordination polyhedron of uranium atoms is a pentagonal bipyramid, whose apices are occupied by oxygen atoms of uranyl, three chromate groups, and two molecules of isonicotinic acid. Crystal chemical formula of the [UO2CrO4(C5NH5COO)] layer can be represented as AT3B2, where A = UO 2 2+ , T3 = CrO 4 2? , and B2 = C5NH5COO molecules. The isonicotinic acid molecules are in the form of zwitterions.  相似文献   

19.
A method for producing synthetic troegerite of composition(UO2)3(AsO4)2 · 12H2. Owas developed. X-ray diffraction, IR spectrometry, X-ray fluorescence analysis, and scanning calorimetry were used to study its dehydration and thermal decomposition, to solve the structgure, and to determine X-ray diffraction and IR spectroscopic characteristics.  相似文献   

20.
Four structural models of volborthite Cu3(OH)2(V2O7)·2H2O (a = 10.646(2) Å, b = 5.867(1) Å, c = 14.432(2) Å, β = 95.19(1)°, V = 897.7(5) Å3, Z = 4, R/R w = 0.038/0.046) calculated in the space groups determined from the systematic absences are compared. Based on the structure balance and the similarity of constituting polyhedra, values of the R factor, and isotropic thermal parameters, the space group Ia is found to be preferable, which is the only possible asymmetric and uniform variant. Hydrogen atoms of OH-groups, oxygen atoms and, partially, hydrogen atoms of water are localized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号