共查询到20条相似文献,搜索用时 0 毫秒
1.
Determination of rosamultin in rat plasma by LC–MS/MS and its application to a pharmacokinetic study
A specific and reliable LC–MS/MS method for the determination of rosamultin in rat plasma was validated. Plasma samples were prepared with protein precipitation method, and chromatographic separation was performed on a Thermo C18 analytical column (4.6 mm × 50 mm, 3.0 μm). The mass spectrometry (MS) analysis was conducted in positive SRM mode for the transitions of m/z 673.2 → 511.1 for rosamultin and m/z 601.1 → 330.9 for IS. The method validation was conducted over the calibration range of 1.0–500 ng/mL with the precision ≤11.03% and accuracy within ±14.64%. The assay was applied to the pharmacokinetic study after oral administration of rosamultin at a dose of 20 mg/kg in rats. 相似文献
2.
Although bilobetin, a biflavone isolated from the leaves of Ginkgo biloba, represents a variety of pharmacological activities, to date there have been no validated determination methods for bilobetin in biological samples. Thus, we developed a liquid chromatographic method using a tandem mass spectrometry for the determination of bilobetin in rat plasma. After protein precipitation with acetonitrile including diclofenac (internal standard), the analytes were chromatographed on a reversed-phased column with a mobile phase of purified water and acetonitrile (3:7, v/v, including 0.1% formic acid). The ion transitions of the precursor to the product ion were principally deprotonated ions [M − H]− at m/z 551.2 → 519.2 for bilobetin and 296.1 → 251.7 for the IS. The accuracy and precision of the assay were in accordance with US Food and Drug Administration regulations for the validation of bioanalytical methods. This analytical method was successfully applied to monitor plasma concentrations of bilobetin over time following intravenous administration in rats. 相似文献
3.
Ting Yang Wenwu Xu Xiyu Wei Zhenzhen Zhang Yue Sun Houru Liu Peihua Yu Wei Li Dehong Yu 《Biomedical chromatography : BMC》2022,36(2):e5268
Ginsenoside Rh3 (GRh3) is a bacterial metabolite of ginsenoside Rg5, which is the main component of hot-processed ginseng. A simple, efficient and sensitive method was developed and validated for the determination of GRh3 in rat plasma by LC–tandem mass spectrometry. After protein precipitation with methanol/acetonitrile (1:1, vol/vol) using propranolol as the internal standard, the target analytes were separated on an XDB C18 column, with methanol containing 0.1% formic acid and water containing 0.1% formic acid used as mobile phases for gradient elution. Mass spectrometry was performed in electrospray ion source–positive ion mode and multiple reaction monitoring mode, monitoring the transitions m/z 622.5 → 425.5 and m/z 260.1 → 116.1 for GRh3 and internal standard, respectively. The concentration range of GRh3 was 20–20,000 ng/mL and the correlation coefficient (r2) was greater than 0.99. The accuracy error and relative standard deviation were below 15%. The extraction recovery and matrix effect were 74.2% to 78.7% and 96.9% to 108.4%, respectively. Under different conditions, GRh3 was stable in the range of 1.8%–8.7%. This method has been successfully applied to study the pharmacokinetics of GRh3 with an oral dose of 10.0 mg/kg and an intravenous dose of 2.0 mg/kg in rats, respectively. The absolute bioavailability of GRh3 was 37.6%. 相似文献
4.
Kansuinine A is a macrocyclic jatrophane diterpene isolated from the plant Euphorbia kansui Liou. It exhibits many pharmacological activities including cytoxic, antitumor, antiallergic and proinflammatory effects. In the present study, a simple and sensitive LC–MS/MS method was established and validated for the determination of kansuinine A in rat plasma. After methanol-mediated protein precipitation, chromatographic separation was achieved on an Acquity BEH C18 column (2.1 × 100 mm, 1.7 μm) using acetonitrile and 0.1% formic acid in water as mobile phase by gradient elution. Kansuinine A and IS were quantified in negative multiple reaction monitoring mode with ion transitions at m/z 731.1–693.2 for kansuinine A and m/z 723.2–623.1 for IS. The method showed excellent linearity over the range 1–500 ng/ml. The intra- and inter-day precisions (relative standard deviation) were 2.13–4.28 and 3.83–7.67%, respectively, whereas accuracy (relative error) ranged from −4.17 to 3.73%. The extraction recovery, stability and matrix effect met the requirement of the regulations issued by the US Food and Drug Administration. The validated method was successfully applied to the pre-clinical pharmacokinetic study of kansuinine A in rats after oral administration (20 mg/kg) and intravenous administration (2 mg/kg). This study provides valuable reference for the further study of E. kansui liou, especially for the drug development and clinical application of kansuinine A. 相似文献
5.
In this study, a simple and reliable LC–MS/MS method was first proposed for the simultaneous determination of TUG-891 and its metabolites TUG-891-alcohol, TUG-891-aldehyde, and TUG-891-acid in rat plasma. The analytes and fasiglifam (internal standard) were extracted from plasma samples with acetonitrile and separated using an Acquity BEH C18 column (1.7 μm, 2.1 × 50 mm) with water containing 0.05% ammonium hydroxide and acetonitrile containing 0.05% ammonium hydroxide as the mobile phase. A Q-Exactive Orbitrap mass spectrometer in full-scan mode was used for mass detection, and the data analysis was obtained using a mass extraction window of 5 ppm. The calibration curves exhibited excellent linearity (correlation coefficient > 0.9981) in the concentration range of 0.5–1000 ng/mL. The lower limit of quantification was 0.5 ng/mL for all analytes. The intra- and inter-day precision was less than 11.31%, and the accuracy ranged from −11.50 to 9.50%. The extraction recovery of the analytes from rat plasma was greater than 82.31%, and no obvious matrix effect was found. The established method was further applied to the pharmacokinetic study of TUG-891, TUG-891-alcohol, TUG-891-aldehyde, and TUG-891-acid in rat after a single dose of 5-mg/kg treatment of TUG-891. The results demonstrated that TUG-891 was rapidly metabolized into its metabolites and the systemic exposures of the metabolites were much higher than those of TUG-891. 相似文献
6.
Natalia E. Moskaleva Pavel A. Markin Roman M. Kuznetsov Tatiana M. Andronova Svetlana A. Appolonova 《Biomedical chromatography : BMC》2020,34(12):e4948
GMDP (glucosoaminyl-muramyl-dipeptide), a synthetic analog of the peptidoglycan fragment of the bacterial cell wall, is an active component of the immunomodulatory drug Licopid. But the pharmacokinetic parameters of GMDP in humans after oral administration have not been investigated yet. The present study aimed at developing and validating a sensitive LC–MS/MS method for the analysis of GMDP in human plasma. The sample was prepared by solid-phase extraction using Strata-X 33 μm polymeric reversed-phase 60 mg/3 mL cartridges Phenomenex (Torrance, CA, USA). The analytes were separated using an Acquity UPLC BEN C18 column, 1.7 μm 2.1 × 50 mm Waters (Milford, USA). GMDP and internal standard growth hormone releasing peptide-2 (pralmorelin) were ionized in positive electrospray ionization mode and detected in multiple reaction monitoring mode. The developed method was validated within a linear range of 50–3000 pg/mL for GMDP. Accuracy for all analytes, given as the deviation between the nominal and measured concentration and assay variability , ranged from 1.61 to 3.02% and from 0.89 to 1.79%, respectively, for both within- and between-run variabilities. The developed and validated HPLC–MS/MS method was successfully used to obtain the plasma pharmacokinetic profiles of GMDP distribution in human plasma. 相似文献
7.
Jizhen Liu Musi Ji Zhidong Li Xun Xu Lili Li Huawen Li Yuguang Tian Xiaohua Su 《Biomedical chromatography : BMC》2020,34(11):e4937
A simple and sensitive ultra-high performance liquid chromatography–tandem mass spectrometric (UHPLC–MS/MS) method was developed and validated for the determination of ARQ531, a Bruton’s tyrosine kinase inhibitor in rat plasma. After protein precipitation with acetonitrile, the samples were separated on a UPLC BEH C18 column with 0.1% formic acid in water and acetonitrile as mobile phase at a flow rate of 0.4 ml/min. The mass detection was performed on a triple quadrupole tandem mass spectrometer by multiple reaction monitoring with precursor-to-product ion transitions of m/z 479.1 > 365.1 and m/z 441.2 > 138.1 for ARQ531 and internal standard, respectively. Good linearity (correlation coefficient > 0.9988) was achieved over the concentration range of 0.5–1,000 ng/ml and the lower limit of quantitation was 0.5 ng/ml. The accuracy ranged from −13.50 to 11.35% and the precision was <8.87%. The extraction recovery was >85.56%. ARQ531 was demonstrated to be stable under the tested conditions. The validated method was further applied to a pharmacokinetic study of ARQ531 in rats after intravenous (1 mg/kg) and oral (1, 3 and 10 mg/kg) administration. The results demonstrated that ARQ531 displayed linear pharmacokinetic profiles over the oral dose range of 1–10 mg/kg and good oral bioavailability (>50%). 相似文献
8.
Siyao Zhang Shutong Chen Yujing Song Ying Xin Ying Cui Feng Qin 《Biomedical chromatography : BMC》2022,36(8):e5395
A rapid, selective and sensitive ultra-high-performance liquid chromatography–tandem mass spectrometry (UHPLC–MS/MS) method was developed to detect meloxicam in human plasma. A triple quadrupole tandem mass spectrometer equipped with an electrospray ionization source was used in positive ion mode. Protein precipitation with acetonitrile was used for sample preparation. Meloxicam and 13C6-meloxicam internal standard were analyzed on an Acquity CSH C18 column with a mobile phase of acetonitrile and water in 0.1% formic acid using a gradient program for separation. The retention time of meloxicam was 1.1 min and the total run time was only 2.0 min. Detection was performed in multiple reaction monitoring mode using an electrospray ionization source with optimized mass spectrometry parameters. The calibration curves were linear in the range 10.0–3.00 × 103 ng/ml (r ≥ 0.99). The within-run and between-run RSDs were ≤14.8%. The within-run and between-run REs ranged from −4.6 to 10.7%. There was no significant matrix effect, and the recovery rate was high. This method was fully validated, including reinjection reproducibility in human plasma. The method was applied to the pharmacokinetic study. All of the incurred sample reanalysis methods met the criteria. 相似文献
9.
Qiaoling Yang Hongjing Li Mingzhu Gui Zhiling Li Huajun Sun 《Biomedical chromatography : BMC》2020,34(3):e4780
Polyphyllin II, a major steroidal saponin isolated from Paris polyphylla, exhibits significant pharmacological activities. In this study, a rapid and sensitive liquid chromatography–tandem mass spectrometry method was established and validated for the determination of polyphyllin II in plasma. Polyphyllin II and polyphyllin VII (internal standard) were separated on a Waters Acquity™ HSS T3 column and the mass analysis was performed in a triple quadrupole mass spectrometer equipped with an electrospray ionization ion source. Results showed that the method was sensitive (lower limit of quantitation 0.5 ng/ml), precise (<15%) and linear in the range of 0.5–500 ng/ml (r > 0.99). Interestingly, the sensitivity in current study was ~10 times higher than that in the previous study. The results of the pharmacokinetic study of polyphyllin II in rats suggested that polyphyllin II was poorly absorbed into blood and reached its highest concentration at ~3.67–5.00 h with a slow elimination half-life of 8.34–13.37 h. The bioavailability was 6.1–8.2%. The results indicated that the absorption of polyphyllin II may primarily occur via passive diffusion in rats. This study provides valuable information that can be used as a reference for the pharmacokinetic investigation of other steroidal saponins. 相似文献
10.
A simple and sensitive ultra-high-performance liquid chromatography tandem mass spectrometric method was developed and validated for the determination of foretinib in rat plasma. The analyte and internal standard were extracted from the bio-samples with acetonitrile and then separated on an Acquity UPLC BEH C18 column (50 × 2.1 mm, 1.7 μm) using 0.1% formic acid aqueous and acetonitrile as mobile phase, at a flow rate of 0.4 ml/min. The mass detection was performed in positive selected reaction monitoring mode with precursor-to-product transitions at m/z 317.1 > 128.1 for foretinib and m/z 502.2 > 323.1 for internal standard. The assay was demonstrated to be linear in the concentration range of 0.5–1000 ng/ml, with correlation coefficient >0.999. The mean extraction recovery of foretinib from rat plasma was within the range of 84.55–88.09%, while the matrix effect was in the range of 88.56–99.21%. The intra- and inter-day precisions were <12.95% and the accuracy ranged from −7.55 to 8.57%. Foretinib was stable in rat plasma under the tested storage conditions. The validated assay was successfully applied to the pharmacokinetic study of foretinib in the rats. The results revealed that foretinib showed moderate elimination half-life, low clearance and dose-independent pharmacokinetic profiles inrats. 相似文献
11.
Abhishek Dixit Vinay Kiran Bhavesh Babulal Gabani Zainuddin Mohd Ravi Kumar Trivedi Ramesh Mullangi 《Biomedical chromatography : BMC》2020,34(4):e4802
Filgotinib is a selective JAK1 (Janus kinase) inhibitor, filed in Japan for the treatment of rheumatoid arthritis. In this paper, we report a validated liquid chromatography coupled with tandem mass spectrometry for the quantification of filgotinib in rat plasma using tofacitinib as an internal standard (IS) as per the Food and Drug Administration regulatory guidelines. Filgotinib and the IS were extracted from rat plasma using ethyl acetate as an extraction solvent and chromatographed using an isocratic mobile phase (0.2% formic acid:acetonitrile; 20:80, v/v) at a flow rate of 0.9 mL/min on a Gemini C18 column. Filgotinib and the IS were eluted at ~1.31 and 0.89 min, respectively. The MS/MS ion transitions monitored were m/z 426.3 → 291.3 and m/z 313.2 → 149.2 for filgotinib and the IS, respectively. The calibration range was 0.78–1924 ng/mL. No matrix effect and carryover were observed. Intra- and inter-day accuracies and precisions were within the acceptance range. Filgotinib was stable for three freeze–thaw cycles: on bench-top up to 6 h, in an autosampler up to 21 h, and at −80 ° C for 1 month. This novel method has been applied to a pharmacokinetic study in rats. 相似文献
12.
Determination of atorvastatin and metabolites in human plasma with solid-phase extraction followed by LC–tandem MS 总被引:2,自引:0,他引:2
The aim of the present study was to develop a chromatographic method for the analysis of atorvastatin, o- and p-hydroxyatorvastatin (acid and lactone forms) in human plasma after administration of atorvastatin at the lowest registered dose (10 mg) in clinical studies. Sample preparation was performed by solid-phase extraction and was followed by separation of the analytes on an HPLC system with a linear gradient and a mobile phase consisting of acetonitrile, water and formic acid. Detection was achieved by tandem mass spectrometry operated in the electrospray positive ion mode. Validation of the method for the compounds for which reference compounds were available (acid forms of atorvastatin, o- and p-hydroxyatorvastatin) showed linearity within the concentration range (0.2–30 ng/ml for atorvastatin acid and p-hydroxyatorvastatin acid, and 0.5–30 ng/ml for o-hydroxyatorvastatin acid) (r20.99, n=5 for all analytes). Accuracy and precision (evaluated at 0.5, 3 and 30 ng/ml for atorvastatin, p-hydroxyatorvastatin and 1, 3 and 30 ng/ml for o-hydroxyatorvastatin) were both satisfactory. The detection limit was 0.06 ng/ml for atorvastatin and p-hydroxyatorvastatin, and 0.15 ng/ml for o-hydroxyatorvastatin. The method has been successfully applied in a clinical study where atorvastatin, o- and p-hydroxyatorvastatin (both acid and lactone forms) could be detected in a 24-h sampling interval after administration of the lowest registered dose of atorvastatin (10 mg) for one week. 相似文献
13.
《Arabian Journal of Chemistry》2022,15(12):104369
Oleandrin and adynerin are the main toxic components of oleander, an evergreen shrub or a small tree of the oleander family, which belongs to the class of cardiac glycosides exhibiting delayed action. The pharmacokinetic differences of oleandrin and adynerin in rats were studied by ultra-performance liquid chromatography–tandem mass spectrometry (UPLC–MS/MS) under two different administration modes: oral (5 mg/kg) and sublingual intravenous injection (1 mg/kg). The chromatographic column was UPLC BEH C18 (50 mm × 2.1 mm, 1.7 μm), and the column temperature was set at 40 °C. The mobile phase was acetonitrile–water (containing 0.1 % formic acid), with gradient elution, the flow rate was 0.4 mL/min, and the elution time was 4 min. Electrospray (ESI) positive ion mode detection with multiple reaction monitoring mode (MRM) was used for quantitative analysis: oleandrin m/z 577 → 145, adynerin m/z 534 → 113, and internal standard m/z 237 → 135. The established UPLC–MS/MS method was successfully applied to the pharmacokinetics in rats after administering oleandrin and adynerin. The bioavailability of oleandrin and adynerin was found to be low, 7.0 % and 93.1 %; respectively. 相似文献
14.
As a traditional Chinese medicine, Marsdenia tenacissima (Roxb.) Wight et Arn. plays an indispensable role in clinical practice owing to its specific efficacy in treating malignant tumors, leukocythemia, cystitis and asthma. This study aimed to establish a novel and scientific LC–MS/MS approach to simultaneously determine tenacissoside B, H, G and I, caffeic acid, cryptochlorogenic acid, chlorogenic acid and neochlorogenic acid from M. tenacissima extract within the rat plasma samples. Digoxin was used as the internal reference. All determinations were carried out using the Eclipse Plus C18 column, and water (containing 0.1% formic acid) was used as the mobile phase A, while acetonitrile was the mobile phase B for gradient elution. The UPLC methods were validated, including calibration curves, accuracy, precision, stability and recovery of the total eight analytes, in accordance with the requirements for biopharmaceutical analysis. Moreover, the proposed approach was also used in comprehensive pharmacokinetic research on those eight analytes in rats following M. tenacissima extract gavage. According to the pharmacokinetic parameters, tenacissoside B, I, H and G are the long-acting and primary bioactive constituents in M. tenacissima extract, with long mean residence times and high concentrations. Our findings shed light on the absorption mechanism and provide significant information for the clinical application of M. tenacissima. 相似文献
15.
《Arabian Journal of Chemistry》2019,12(8):2320-2327
Simultaneous determination of nimesulide, phenylpropanolamine, chlorpheniramine and caffeine in rat plasma by reversed-phase high performance liquid-chromatography (RP–HPLC) with photodiode array (PDA) detection method was developed and validated. Sample preparation based on a simple extraction procedure consisting of deproteination and extraction with methanol solution followed by volume make up with the aqueous component of the mobile phase obtained best recoveries of the analytes. The chromatographic conditions were optimized and the analytes were separated on XBridge™ C18 (3.5 μm, 4.6 × 150 mm) column in isocratic elution with the mobile phase composition of acetonitrile and 10 mM ammonium acetate buffer (pH 4.0, 0.1% formic acid) (18:82 v/v%) at the flow rate of 1 mL min−1 and the effluents were monitored in the wavelength range of 220–275 nm. The method was linear for all analytes over the following concentration (ng mL−1) ranges: nimesulide 250–4000; phenylpropanolamine 100–1500; chlorpheniramine 20–500; and caffeine 10–100. Acceptable precision, accuracy and recoveries were obtained for quality control (QC) samples at three concentrations (low QC, middle QC and high QC). The percentage of relative standard deviation (% RSD) of Inter and intra-run precision of all molecules was <15% and the percentage of accuracy was 100 ± 10. The analytes were more stable in rat plasma at different storage conditions. Finally the method was efficiently applied to pharmacokinetics study in rat plasma. 相似文献
16.
Li Xie Weilin Chen Qing Shu Wei Xie Linxiao Bian Guozhe Deng Xuejun Kang Weihong Ge 《Journal of separation science》2023,46(3):2200629
The simultaneous determination of polyamines and their metabolites in urine samples was achieved by gas chromatography–mass spectrometry in the selected ion monitoring mode. After conjugating with the ion-pair reagent bis-2-ethylhexylphosphate in the aqueous phase, the polyamines in the samples were extracted with polystyrene nanofiber-based packed-fiber solid-phase extraction followed by a derivatization step using pentafluoropropionyl anhydride. With optimal conditions, all analytes were separated well. For analytes of putrescine, cadaverine, N-acetylputrescine, and N-acetylcadaverine, the linearity was good in the range of 0.05–500 μmol/L (R2 ≥ 0.993). While for spermidine, spermine, acetylspermidine, N8-acetylspermidine, and N-acetylspermine, the linearity was good in the range of 0.5–500 μmol/L (R2 ≥ 0.990). The recoveries of three spiked concentrations (0.5, 5, 300 μmol/L) were 85.6%–108.4%, and relative standard deviations for intra- and interday were in the range of 2.9%–13.4% and 4.5%–15.1%, respectively. The method was successfully applied to the analysis of urine samples of gastric cancer patients. The results showed that the levels of most polyamines and N-acetylated polyamines from the patient group were significantly higher than those from the control group. The altered concentrations of the above-mentioned metabolites suggest their role in the pathogenesis of gastric cancer, and they should be further evaluated as potential markers of gastric cancer. 相似文献
17.
《Arabian Journal of Chemistry》2020,13(2):4162-4169
A novel, simple and sensitive method for the determination of Lusutrombopag in rat plasma using liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) was developed and validated. The determination was performed on an API4000 triple quadrupole mass spectrometry in the multiple reaction monitoring mode using the respective [M+H]+ ions m/z 593.1 → 272.3 for Lusutrombopag. The limit of detection was 0.5 ng/mL, and the lower limit of quantification was 2.0 ng/mL in rat plasma. Good linearity was obtained over the range of 2.0–150.0 ng/mL and the correlation coefficient was found to be 0.9998. The intra and inter-day precisions were found to be 3.8–6.9% and 6.8–10.5%, respectively. The intra and inter-day accuracy derived from QC samples was found to be 2.5–4.9% and 5.5–7.2%, respectively. The analyte was stable under various conditions (at room temperature, during freeze-thaw, in the autosampler and under deep-freeze conditions). The F-test and t-test at 95% confidence level were subjected on data for statistical analysis. The developed method was successfully applied to the pharmacokinetic study in rats. 相似文献
18.
Yixuan Feng Lele Li Yuxuan Li Xinxin Zhou Xiaoying Lin Yue Cui Heyun Zhu Bo Feng 《Biomedical chromatography : BMC》2022,36(2):e5265
Poloxamer (PL)188 is a commonly used pharmaceutical excipient with unique physicochemical properties. In this study, an MSALL quantitative method for the determination of PL188 in rat plasma by UHPLC–Q-TOF/MS was developed and validated. PL188 was analyzed on PLRP-S reversed-phase column (50 × 4.6 mm, 8 μm, 1,000 Å) with mobile phase 0.1% formic acid–water and 0.1% formic acid in acetonitrile–isopropanol (2:3, v/v). The liner range was 0.1–10.0 μg/ml. A pharmacokinetic study was performed on rats at a dose of 5 mg/kg by intravenous injection. The pharmacokinetic parameters of intravenous injection were as follows: half-life was 2.0 ± 1.1 h, volume of distribution was 5.1 ± 3.2 L/kg, area under the concentration–time curve was 3.0 ± 0.6 μg/L h and clearance was 1.7 ± 0.3 L/h/kg. The results indicated that PL188 could be rapidly distributed to tissues with a high clearance rate. This study can provide a good reference for the further study of PL188. 相似文献
19.
Seon Yu Lee Ji Hyun Jeong Bo Na Kim So Jung Park Yang-Chun Park Guk Yeo Lee 《Biomedical chromatography : BMC》2020,34(4):e4774
The aim of this study was to confirm pharmacokinetic screening of multiple components in healthy Korean subjects after oral administration of Samso-eum and perform quantitation of active components in the human plasma. Thirteen potential bioactive components [puerarin (PRR), daidzin, nodakenin, ginsenoside Rb1, 18β-glycyrrhetinic acid (18β-GTA), 6-shogaol, naringin, glycyrrhizin, hesperidin, platycodin D, naringenin, hesperetin, and 6-gingerol] were screened based on literature. The results showed that three analytes (daidzin, naringenin, and hesperetin) were detected in trace amounts. In addition, PRR and 18β-GTA were detected in human plasma after the oral administration of Samso-eum. In this study, a liquid chromatography–electrospray ionization-tandem mass spectrometry method was validated for the simultaneous determination of PRR and 18β-GTA in human plasma. This was the first study to evaluate pharmacokinetics of PRR and 18β-GTA after the usual oral dose of Samso-eum (30 g containing 102.48 mg PRR, 48.18 mg glycyrrhizin) in human subjects. 相似文献
20.
Wada M Yokota C Ogata Y Kuroda N Yamada H Nakashima K 《Analytical and bioanalytical chemistry》2008,391(3):1057-1062
A sensitive high-performance liquid chromatography (HPLC)–fluorescence method for determination of morphine (Mor) in rat brain
and blood microdialysates was developed using 4-(4,5-diphenyl-1H-imidazol-2-yl)benzoyl chloride (DIB-Cl) as a label. Mor was labeled with DIB-Cl under mild reaction conditions (at room temperature
for 10 min). The separation of DIB-Mor was carried out on an octadecylsilica (ODS) column with CH3CN/0.1 M acetate buffer (pH 5.4) within 14 min. The detection limits of Mor in brain and blood microdialysates at a signal-to-noise
ratio of 3 were 0.4 and 0.6 ng mL−1, respectively. The proposed method was successfully applied to the preliminarily study of potential pharmacokinetic interaction
between Mor and diclofenac. 相似文献