首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
高比表面积TiO_2纳米管的制备与表征   总被引:16,自引:2,他引:14  
采用一种简单的化学合成方法制备TiO2 纳米管 ,并采用TEM、XRD等分析手段对TiO2 纳米管进行了表征 .考察了不同温度对TiO2 纳米管比表面积及孔体积的影响 .结果表明 ,采用该方法制得的TiO2 纳米管 ,比用模板法制备的TiO2 纳米管的管径小、管形均匀 .此纳米管的比表面积大于 2 0 0m2 /g ,孔体积最大可达 0 .784cm3 /g .  相似文献   

2.
高比表面积VPO催化剂的制备及其性质研究   总被引:4,自引:0,他引:4  
利用有机相制备VPO催化剂,在制备过程中加入聚乙二醇(PEG)作为分散剂可有效提高VPO催化剂的比表面积。实验中采用两种不同分子量的聚乙二醇(PEG 6000和PEG 10000),所得VPO催化剂的比表面积分别为52与54m2/g,而不加聚乙二醇的VPO催化剂其比表面积仅为19m2/g.XRD,XPS及FTIR的结果表明,催化剂的主要晶相均为(VO)2P2O7,但两类催化剂的微观结构有所不同。正丁烷选择氧化生成马来酐的催化反应结果表明,385℃时加聚乙二醇制备的VPO催化剂其丁烷的转化率为84%~86%.马来酸酐的选择性为78%,而不加聚乙二醇制备的VPO催化剂其转化率和选择性均为71%.  相似文献   

3.
采用氨水 碳酸铵混合沉淀剂制备了低铈型铈锆钇三组分储氧材料. 采用X射线衍射、 BET、 氧脉冲吸附和H2程序升温还原(H2-TPR)等技术对材料的晶体结构、 比表面积、 孔结构、 储氧性能和还原性能进行了研究. 结果表明, 该材料经873 K焙烧4 h后比表面积达到116.8 m2/g, 孔容达到0.30 cm3/g, 经1 273 K老化10 h后, 比表面积和孔容仍然保持在68.1 m2/g和 0.22 cm3/g. 由XRD结果可知, 材料的物相组成为四方相的Zr0.84 Ce0.16 O2, 在热处理过程中物相结构稳定. 氧脉冲吸附和程序升温还原的结果表明, 材料储氧性能保持较好.  相似文献   

4.
高比表面积磷化钼的制备   总被引:1,自引:0,他引:1  
 利用柠檬酸与钼的螯合作用,采用柠檬酸-程序升温还原联合法制备了高比表面积的磷化钼,并考察了制备条件的影响. 结果表明,当柠檬酸与钼的摩尔比为2.0时,得到的磷化钼比表面积高达122.0 m2/g. 采用该方法还可制得较高比表面积的磷化镍和磷化钴.  相似文献   

5.
采用超临界水氧化的方法,使用自主设计的SCWO连续性反应釜制备出纳米Ce O2粉末,并应用XRD,FE-SEM,XPS等一系列分析手段对实验样品的结构与形貌进行了表征。结果表明:采用SCWO超临界反应釜制备的产物Ce O2纳米颗粒呈球形,结晶良好,平均粒径控制在10 nm左右,随着Ce(NO3)3·6H2O水溶液浓度的增大,制备出的纳米Ce O2粉末的粒径逐渐减小,粒度分布更加集中,但是粒子间团聚现象加重,Ce与O的结合能力逐渐减弱;随着Ce(NO3)3·6H2O水溶液浓度的增大,所制得的产物纳米Ce O2颗粒的BET比表面积也逐渐增加,平均比表面积为48 m2·g-1。  相似文献   

6.
结合近期研究工作, 简要介绍了在溶液环境下, 利用有机分子在金属表面构筑纳米结构, 利用光化学反应方法调控所得的纳米结构, 利用电化学扫描隧道显微镜对这些结构进行观察, 及利用毛细管隧道结方法测量纳米结构电学性质的相关结果. 并展望了表面纳米结构的构筑、控制和性质研究领域的发展趋势.  相似文献   

7.
使用尿素水热法合成了均匀的二氧化铈球型纳米材料.纳米球是由纳米层以及纳米颗粒所构成的核壳结构,其平均粒径为320nm,同时表面主要暴露{111}晶面.尿素水解所产生的氨气分子为纳米球状结构的形成提供了模板,而生成的碳酸根与氢氧根离子作为铈离子的沉淀剂.使用氢气程序升温还原技术表征了氧化铈纳米球材料的氧化还原能力,同时以一氧化碳氧化为探针反应研究了其催化性能.  相似文献   

8.
采用硝酸镍和草酸为原料,采用固态热分解法制备得到高比表面积的介孔Ni O纳米粒子,考察了原料的用量,热处理的温度,热处理的时间对孔结构的影响。用X射线衍射、透射电镜、扫描电镜和N2吸附-脱附技术对材料的物化性质进行了表征。结果表明:硝酸镍和草酸1∶1混合均匀、400℃灼烧4 h得到的介孔Ni O粒子的孔结构为最发达的蠕虫状介孔结构,比表面积和孔容分别达到236 m2·g-1和0.42 cm3·g-1。  相似文献   

9.
Ln_2Mo_3O_9的制备、结构及电磁性质史发年,任玉芳,孟建(中国科学院长春应用化学研究所稀土化学与物理开放实验室长春130022)关键词稀土钼酸盐,结构,电学性质,磁学性质高氧化态Mo ̄(6+)与稀土的复合氧化物研究得较多 ̄[1~4],而低氧化...  相似文献   

10.
池俊红  王娟 《物理化学学报》2010,26(8):2306-2310
用化学气相沉积(CVD)法制备了Mn掺杂的SnO2一维纳米结构(纳米线及纳米带),X射线衍射(XRD)显示样品为金红石型SnO2晶体,其生长机理可分别归结为气-液-固(VLS)和气-固(VS)机理,生长温度和气态原料浓度的差别是造成样品形貌及生长机理不同的主要原因.样品的拉曼谱出现了500、543、694和720cm-1四个新拉曼谱峰,分别是由活性的红外模和表面模引起的.纳米线及纳米带发光峰位于520nm处,发光强度随样品中氧空位的增减出现由强到弱的变化.  相似文献   

11.
采用浸渍法和共沉淀法制备了CrOx/ZrO2样品.制备过程中所得沉淀都经100 ℃碱液回流老化24 h.通过X射线衍射、X射线光电子能谱、氮吸附、差热-热重分析等手段对样品进行了表征.结果证实,碱液回流过程中会有SiO2从所用的玻璃器皿进入样品, SiO2的表面修饰作用提高了载体的热稳定性.氧化铬的引入进一步提高了所得样品的比表面和热稳定性.与浸渍法相比,共沉淀法制备的样品具有更好的性能.其中铬锆摩尔比为0.15时,用NaOH作沉淀剂, pH值为13的条件下制备的样品在1000 ℃焙烧后比表面仍达到121 m2•g-1.  相似文献   

12.
林建新  郑勇  郑瑛  魏可镁 《无机化学学报》2006,22(10):1778-1782
采用溶胶凝胶法,以蔗糖和正硅酸乙酯(TEOS)为原料,草酸为TEOS水解的催化剂,制备均相碳化硅前驱体,在氩气氛和高温条件下(1 350~1 600 ℃)将碳化硅先驱体进行碳热还原,制备出高比表面积的SiC。考察了水/TEOS物质的量的比、碳/硅物质的量的比及镍盐等因素对碳化硅比表面积的影响。结果表明,当nwater/nTEOS=7.5,nC/nSi=4时,适宜的镍催化剂(nNi/nTEOS=0.005),凝胶形成的时间最短,镍盐的加入可使碳热还原温度降低200 ℃。  相似文献   

13.
凝胶-模板法制备高比表面积氧化镁   总被引:1,自引:0,他引:1  
以四水乙酸镁为前驱体,以大米粉形成的凝胶为模板,采用新的凝胶-模板法制备了一系列的氧化镁材料,并用X射线衍射、扫描电镜、低温氮气吸附-脱附、X射线荧光分析、热重-差示扫描量热、CO2程序升温脱附和氨程序升温脱附等手段对样品进行了表征.该方法主要利用大米粉在水中加热形成凝胶来分散镁盐前驱体,再通氧焙烧去除模板从而获得多孔MgO材料.结果表明,制得的MgO具有高比表面积(可达206m2/g)和双介孔结构(孔径分别位于3.9和5~40nm附近).与直接焙烧四水乙酸镁制得的MgO相比,这类新型高比表面积MgO具有较多的强碱位和较少的酸性位,并在异丙醇催化分解反应中表现出更高的丙酮收率和选择性,有望成为一类优良的固体碱催化剂.  相似文献   

14.
提出了一种新颖的快速制备高比表面氧化铈纳米粉体的方法———盐助溶液燃烧法,通过XRD、TEM和比表面积分析,研究了燃料/氧化剂的比率、不同盐的种类和用量对产物性质的影响。研究发现,在传统的溶液燃烧法中简单的引入KCl导致产物比表面积由14.10 m2.g-1剧增到156.74 m2.g-1,得到了4~6 nm高分散性的纳米氧化铈粒子。通过示意图初步讨论了盐助溶液燃烧合成过程高分散纳米氧化铈粒子形成的可能机制,认为由于自蔓延溶液燃烧反应快速释放出大量的热量,使反应体系产生瞬间高温,盐会迅速在新形成的纳米晶的表面原位析出形成薄盐层,当快速冷却后,氧化铈纳米晶就被镶嵌在凝固的盐基质中,阻止了新生成纳米粒子的重新团聚和烧结,从而得到氧化铈单分散粒子。  相似文献   

15.
耐温高比表面氧化锡制备   总被引:3,自引:0,他引:3  
对比了氨水或NaOH共沉淀和尿素水解均相沉淀三种不同的制备方法,以及NaOH沉淀不 同的老化条件下制备的SnO2粉体材料的比表面以及烧结特性.实验结果表明,减慢成核速度 及在母液中高温老化都有利于提高初始粒子的晶化程度和焙烧后样品的比表面.以NaOH共沉 淀,在100 ℃下回流老化48 h制备的SnO2具有最大的比表面和最好的烧结性能,在500、800 和1000 ℃焙烧后比表面分别为94、75和53 m2穏-1.初始粒子晶化程度的提高以及材料中 硬团聚的减小是改善SnO2烧结性能的主要原因.  相似文献   

16.
Extremely short-sized multi-wall carbon nanotube (CNT) and high surface area activated carbon were used to increase the electrical performance of lithium-ion capacitors (LIC). After electrodes were synthesized using extremely short-sized CNTs and high specific surface area activated carbon, their electrochemical characteristics were evaluated by XRD, SEM, TEM, cyclic voltammetry, EIS, BET, adoption isotherm, t-plot, and pore size distribution. In the process of electrode preparation using extremely short-sized CNTs and high specific surface area activated carbon, CNTs certainly caused a space-filling effect between these two materials, which had a significant effect on the evaluation of electrical characteristics. These relationships were demonstrated by the results of adsorption–desorption isotherm, pore size distribution, t-plot, and BJH plot. Particularly, in the electrochemical cyclic test, as the content of CNT increased, the current density significantly increased with the formation of a near-perfect rectangular shape. This tendency also exhibited excellent characteristics in a t-I plot, Tafel plot, and LSV plot, which clearly affected the electrochemical oxidation–reduction reaction due to the densification of filling density and space structure by adding extremely short-sized CNTs to the active material. In addition, YP80_CNT3 formed a specific resistance value in the range of 7.2 to 6.2 Ω/cm2, showing significantly reduced values compared to other samples. This research presented herein offers a promising route for the rational design of MWCNT and stable electrochemical reaction with LIC working mechanism.  相似文献   

17.
贵金属纳米晶在电催化等领域具有广泛应用. 其催化活性往往与纳米晶体的表面结构直接相关,而催化剂的贵金属原子利用率与比表面积密切相关. 因小尺寸纳米晶难以保留特定的晶面,而具有特定表面的纳米晶通常结晶成尺寸较大、比表面积比较小的晶体,调控纳米晶的尺寸和表面结构两种策略似乎相互矛盾. 如何可控合成同时具有特定表面结构和大比表面积的贵金属纳米晶具有重要的意义. 本综述从形貌调控角度详细介绍提高贵金属纳米晶原子利用率的方法策略;总结调控单贵金属及其合金同时具有特定晶面和大比表面积的研究现状;最后,对纳米晶的形貌调控领域未来的发展趋势提出展望.  相似文献   

18.
硅酸钠法合成高比表面多孔二氧化硅   总被引:13,自引:1,他引:13  
以硅酸钠和盐酸为原料,用化学沉淀法制备高比表面多孔SiO2,并对其性能进行了研究.结果表明,所合成的SiO2比表面积可达1300m2/g以上,具有蜂窝状的微孔,孔径均匀,而且性能稳定.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号