首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The electronic structures and optical properties of N-doped, S-doped and N/S co-doped SrTiO3 have been investigated on the basis of density functional theory (DFT) calculations. Through band structure calculation, the top of the valence band is made up of the O 2p states for the pure SrTiO3. When N and S atoms were introduced into SrTiO3 lattice at O site, the electronic structure analysis shows that the doping of N and S atoms could substantially lower the band gap of SrTiO3 by the presence of an impurity state of N 2p on the upper edge of the valence band and S 2p states hybrid with O 2p states, respectively. When the N/S co-doped, the energy gap has further narrowing compared with only N or S doped SrTiO3. The calculations of optical properties also indicate a high photo response for visible light for N/S co-doped SrTiO3. Besides, we find a new impurity state which separates from the O 2p states could improve the photocatalytic efficiency and we also propose a model for light electron-hole transportation which can explain the experiment results well. All these conclusions are in agreement with the recent experimental results.  相似文献   

2.
Z.G. Hu  Y.W. Li  Z.Q. Zhu 《Physics letters. A》2008,372(24):4521-4526
Ferroelectric BaTiO3 nanocrystalline films (BTNFs) with the crystalline sizes of about 30 nm were grown on Pt/Ti/SiO2/Si substrates by a modified sol-gel method. Spectroscopic ellipsometry (SE) was used to characterize the films in the photon energy range of 1.5-5.0 eV with a five-phase layered model (air/surface rough layer/BaTiO3/interface layer/Pt). The optical properties in the transparent and absorption regions have been investigated with the Forouhi-Bloomer dispersion relation. With the aid of the structural and dielectric function models, the microstructure and electronic structure of the BTNFs can be readily obtained. It was found that the refractive index reaches the value of 2.20 in the transparent region. Based on the Sellmeier dispersion analysis, the single-oscillator energy is about 4.7 eV for the BTNFs. The long wavelength refractive index n(0) can be estimated to about 2.00 at zero point. The direct optical band gap energy approaches approximately 4.2 eV and Urbach band tail energy is 262±2 and 268±1 meV respectively with increasing crystalline size. A higher band gap observed can be owing to the known quantum confinement effect in the nanocrystalline formation and different fraction of amorphous and crystalline components. The theoretical analysis based on the effective mass approximation theory is well used to explain these experimental data.  相似文献   

3.
We have used in situ photoemission spectroscopy to investigate Niobium doping in polycristalline BaTiO3. The valence band maximum position progressively shifts from 2.5 eV for undoped to 2.84 eV for Nb-doped films. Ceramics and single crystal have been investigated for comparison with thin films. Nb-doped BaTiO3 ceramics and Nb-doped SrTiO3 single crystal show higher Fermi level position indicating that our doped films are less conducting regarding their bulk parents. This was confirmed by impedance spectroscopy under variable temperature. Large amount of niobium is clearly observable at surface but the amount of dopant is drastically reduced below the near-surface region, as evidenced by depth profile. Therefore, we provide evidence of surface segregation which would explain the contrasted resistivity values reported in literature for such donor-doped films.  相似文献   

4.
The defect formation energies and electronic structures of Mn doped strontium titanate have been studied using CRYSTAL-09 code. The defect formation energies for MnSr and MnTi, under different chemical potential conditions, have been obtained to determine the way Mn prefers to occupy in the Mn doped SrTiO3 crystal. From the electronic structures of Mn doped SrTiO3, it is shown that MnSr cannot change the band gap of SrTiO3. However, MnTi can effectively reduce the band gap of SrTiO3 and improve the photocatalysis.  相似文献   

5.
Structural and electronic properties produced by formation of Schottky defects in cubic structure of SrTiO3 crystal are investigated by means of a quantum-chemical simulation based on the Hartree-Fock methodology. The occurrence of Sr partial Schottky defect (VSr+VO) and two types of Ti partial Schottky defects (VTi+2VO) is modeled using a supercell containing 135 atoms. Vacancy-induced changes in the positions of their neighboring atoms are analyzed in light of the computed electron density redistribution in the defective region of supercell. The observed local one-electron energy levels in the gap between the upper valence band and the conduction band can be attributed to the presence of anion and cation vacancies.  相似文献   

6.
The electronic structures of Fe-doped TiO2 anatase (1 0 1) surfaces have been investigated by all spin-polarized density functional theory (DFT) plane-wave pseudopotential method. The general gradient approximation (GGA)+U (Hubbard coefficient) method has been adopted to describe the exchange-correlation effects. Through the density functional calculations for the formation energies of various configurations, the complex of a substitutional Fe plus an O vacancy was found to form easily in the most range of O chemical potential. The calculated density of the states of the system of Fe-doped surface with a surface oxygen vacancy shows a band gap narrowing from 2.8 to 1.9 eV comparing with the pure surface due to the synergistic effects of surface Fe impurities with O vacancies. The system processes high visible light sensitivity and photocatalytic ability by decreasing extrinsic absorption energy. By comparing the partial DOS of some O and Ti atoms lying in the outermost and bottom layers of Fe-doped surfaces, it was found that the influence of Fe impurities on the electronic structure of the system is localized.  相似文献   

7.
It is shown experimentally that the temperature variation of the band gap of SrTiO3 is determined by the phonon population rather than by the structural phase transition. Despite the great similarity between SrTiO3 and KTaO3 no similar temperature variation of the band gap is found in the latter material.  相似文献   

8.
We have prepared SrTiO3/BaTiO3 thin films with multilayered structures deposited on indium tin oxide (ITO) coated glass by a sol-gel deposition and heating at 300-650 °C. The optical properties were obtained by UV-vis spectroscopy. The films show a high transmittance (approximately 85%) in the visible region. The optical band gap of the films is tunable in the 3.64-4.19 eV range by varying the annealing temperature. An abrupt decrease towards the bulk band gap value is observed at annealing temperatures above 600 °C. The multilayered film annealed at 650 ° C exhibited the maximum refractive index of 2.09-1.91 in the 450-750 nm wavelength range. The XRD and AFM results indicate that the films annealed above 600 ° C are substantially more crystalline than the films prepared at lower temperatures which were used to change their optical band gap and complex refractive index to an extent that depended on the annealing temperature.  相似文献   

9.
姜平  司道伟  朱晖文  李培刚  王顺利  崔灿  唐为华 《物理学报》2011,60(11):117203-117203
采用射频磁控溅射方法在(001)SrTiO3衬底上制备(001)取向的(BiFeO3)25/(La0.7Sr0.3MnO3)25多层膜.光学测试结果表明,1.3-2.1 eV范围内,相对于衬底而言多层膜光吸收增强; BiFeO3的带隙为2.7 eV. 另外,结合绝缘介质导电模型分析了所测得的电流-电压数据,在所测试的温度及电压下,所制备的(BiFeO3)25/(La0.7Sr0.3MnO3)25多层膜的导电机理由空间电荷限制电导主导. 关键词: 多层膜 吸光度 空间电荷限制电导  相似文献   

10.
We have studied the electronic properties of the ferroelectric barium titanate BaTiO3 using two complementary bulk-sensitive spectroscopic probes, resonant X-ray emission spectroscopy (RXES) and X-ray absorption spectroscopy in the partial fluorescence mode (PFY-XAS) at the Ba-L3 and Ti-K absorption edges. Contrary to a previous study, we found no fine structure in the pre-edge area of the PFY-XAS spectrum at the Ba-L3 edge, and no temperature-induced spectral change was observed between room temperature and 150 °C. This result is not supportive of the possible presence of the displacement around Ba2+ at the Curie temperature. RXES spectra were measured at the Ti-K edge for BaTiO3, along with SrTiO3 and La-doped metallic SrTiO3. The photon energy of the emission peak is found to be nearly constant throughout the absorption edge for all three compounds. We deduce the Ti 3d states to have a delocalized character, in contrast with the Ba 5d states, a property which is consistent with the proposed scenario of the formation of electric dipoles in BaTiO3.  相似文献   

11.
The electronic structures of CaCu3Mn4O12 and CaCu3Ti4O12 are investigated from HF SCF LCAO calculation. In CaCu3Mn4O12, the band and the density of states show a spin asymmetric ferrimagnetic character with a small energy gap. The Mn spin is anti-aligned with the Cu spin, and the total spin moment is 9 μB. Our calculation correctly reproduces the observed antiferromagnetic insulating character of CaCu3Ti4O12. The gap in the band structure, which is 2.15 eV, reasonably agrees with the experimental value 1.5 eV. The electron density populations at different planes show clearly that the electron density has symmetric character. A tilted Mn(Ti) orbital implies a typical tilted three-dimensional network of MnO6 (TiO6) octahedra due to doping of the Jahn–Teller ion Cu. There is no covalency between Ca, Cu and Mn(Ti) atoms. In contrast, there are stronger bonds and somewhat likely covalency between Cu and O atoms, and also between Mn(Ti) and O atoms.  相似文献   

12.
徐新发  邵晓红 《物理学报》2009,58(3):1908-1916
采用基于第一性原理的密度泛函理论平面波超软赝势法, 研究了Y掺杂SrTiO3体系的空间结构和电子结构性质, 得到了优化后体系的结构参数, 掺杂形成能, 能带结构和电子态密度. 对比掺杂浓度为0125, 025, 033时,Sr1-xYxTiO3和SrTi1-xYxO3的掺杂形成能,发现Y替代Sr能形成更稳定的结构. 对Sr1-xYxTiO3x=0, 0125, 025, 033) 的结构进行了优化,结果表明Y替代Sr后, 随着掺杂浓度增大, 体系的晶格常数逐渐减小, 稳定性逐渐增强. 对不同掺杂浓度的Sr1-xYxTiO3能带结构的计算结果表明:纯净的SrTiO3是绝缘体, 价带顶在R点, 导带底在Γ点, 费米能级处于价带顶; 掺杂Y后, 费米能级进入到导带底中, 体系呈金属性;掺杂浓度越大,费米能级进入导带的位置越深,禁带宽度也近似变宽. 关键词: 3')" href="#">SrTiO3 电子结构 掺杂 VASP  相似文献   

13.
At the generalized gradient approximation (GGA), the elastic constants of the orthorhombic phase of NH3BH3 were calculated with plane-wave pseudo-potential method. Our calculation showed that the orthorhombic phase NH3BH3 is a loose and brittle material, as well as hard to be deformed, also we calculated the elastic anisotropies and the Debye temperatures from the elastic constants. And from the band structure and density of state (DOS), we concluded that NH3BH3 is a wide-gap semiconductor and the band gap is almost 6.0 eV. The bonds between N atoms and H atoms show a strong covalent characteristic, B atoms and H atoms form ironic bonds, and so as to the B-N bonds. Electrons from the B atoms are absorbed by the H atoms around the B atoms, and the H atoms display electronegativity.  相似文献   

14.
Using the full-potential linearized augmented plane-wave (FP-LAPW) method with the generalized gradient approximation (GGA) for the exchange-correlation potential, we studied spin polarization induced by replacement of oxygen atoms by non-magnetic 2p impurities (B, C and N) in non-magnetic cubic SrMO3 perovskites, where M=Ti, Zr and Sn. The results show that the magnetization may appear because of the spin–split impurity bands inside the energy gap of the insulating SrMO3 matrix. Large magnetic moments are found for the impurity centers. Smaller magnetic moments are induced on the oxygen atoms around impurities. It is shown that SrTiO3:C and SrSnO3:C should be magnetic semiconductors while other compounds in this series (SrTiO3:B, SrTiO3:N and SrZrO3:C) are expected to exhibit magnetic half-metallic or pseudo-half-metallic properties.  相似文献   

15.
The structural stability, electronic structure, optical and thermodynamic properties of NaMgH3 have been investigated using the density functional theory. Good agreement is obtained for the bulk crystal structure using both the local density approximation (LDA) and the generalized gradient approximation (GGA) for the exchange-correlation energy. It is found from the electronic density of states (DOS) that the valence band is dominated by the hydrogen atoms while the conduction band is dominated by Na and Mg empty states. Also, the DOS reveals that NaMgH3 is a large gap insulator with direct band gap 3.4 eV. We have investigated the optical response of NaMgH3 in partial band to band contributions and the theoretical optical spectrum is presented and discussed in this study. Optical response calculation suggests that the imaginary part of dielectric function spectra is assigned to be the interband transition. The formation energy for NaMgH3 is investigated along different reaction pathways. We compare and discuss our result with the measured and calculated enthalpies of formation found in the literature.  相似文献   

16.
In order to understand well the different ferroelectric behaviour of quantum paraelectrics and ferroelectrics and the origin of the ferroelectricity of the solid solution KTa0.5Nb0.5O3(KTN),we calculated the electronic structure of CaTiO3,BaTiO3 and KTN by first principles calculation.From total energy analysis,it is shown that,with increasing cell volume,the crystals (CaTiO3,SrTiO3) will have a ferroelectric instability.For BaTiO3,the ferroelectricity will disappear as the cell volume is decreased.From the density of states analysis,it is shown that the hybridization between B d and O p is very important for the ferroelectric stability of ABO3 perovskite ferroelectrics.This is consistent with the analysis of band structure.  相似文献   

17.
The room temperature near-normal incidence reflectance spectra for SrTiO3 and BaTiO3 have been measured in the energy region 10 to 32 eV. The optical constants for the region 0 to 32eV have been derived from a Kramers-Kronig analysis by including earlier measurements for the low energy region. For SrTiO3 five peaks in the Ti3d derived conduction band density of states have been found on the basis of experimental data only, neglecting excitonic effects. The energies of these peaks are in excellent agreement with peaks in the density of states calculated by Mattheiss. The results for BaTiO3 could not be interpreted as unambiguously in such a scheme. Alternatively, some of the transitions could be interpreted as being due to core level excitons.  相似文献   

18.
For the compounds FeGa2S4 and NiGa2S4 band structure calculations have been performed by the ab initio plane wave pseudo-potential method. The valence charge density distribution points to an ionic type of chemical bonding between the transition metal atoms and the ligand atoms. Two models for the pseudo-potentials are used to calculate the band structures: (a) only s and p electrons and (b) also the d-shells of the transition metal atoms are included in the pseudo-potentials. The differences between these two cases of band structures are discussed. Energy gap formation peculiarities are analysed for both crystals. Zak's elementary energy band concept is demonstrated for the energy spectra of the considered crystals.  相似文献   

19.
Two novel structures of Sn3P4 (t-Sn3P4 and o-Sn3P4) are presented in this study. For two novel phases, t-Sn3P4 and o-Sn3P4, the stabilities are verified based on the elastic constants and the phonon dispersion spectra. The phonon density of states (PHDOS), band structures, electronic density of states (DOS) and optical properties are investigated using density functional theory (DFT). o-Sn3P4 has better plasticity and stronger anisotropy than t-Sn3P4. The PHDOS in the lower frequency band is mainly derived from Sn atoms, and in the higher band it is mainly from P atoms. The band structure of t-Sn3P4 shows that it is a narrow indirect band gap semiconductor. And o-Sn3P4 presents a metallic characteristics. Below the Fermi level, the total DOS in the valence band originates mainly from P ‘p’ with the partial contribution from Sn ‘p’. The dielectric constants, conductivities, optical absorption, optical reflectivity, and energy loss functions of t-Sn3P4 and o-Sn3P4 are analyzed. For t-Sn3P4, the static dielectric constant is 12.66?F/m, the real part of conductivity reaches the maximum at 4.45?eV, and the peak in the loss function locates at about 15?eV. For o-Sn3P4, in order, they are 47.27?F/m, at 2.59?eV, and at 10.91?eV.  相似文献   

20.
The geometric and electronic structures of Fe islands on MgO film layers were studied with scanning tunneling microscopy and spectroscopy. The MgO layers were grown on a Nb-doped single crystal SrTiO3 (100) surface. Deposited Fe atoms aggregate into islands, the height and diameter of which are about 2.5 and 9.4 nm respectively. Fe islands modify the electronic structure of MgO surface; a ring type depression in the scanning tunneling microscope topography appears by lowered local electron density of states around Fe islands. We find that adsorbed Fe atoms reduce the gap states of MgO layers around Fe islands, which is attributed to the reason for the depletion of the electronic density of states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号