首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
The electronic and optical properties of zincblende ZnX(X=S, Se, Te) and ZnX:Co are studied from density functional theory (DFT) based first principles calculations. The local crystal structure changes around the Co atoms in the lattice are studied after Co atoms are doped. It is shown that the Co-doped materials have smaller lattice constant (about 0.6%-0.9%). This is mainly due to the shortened Co-X bond length. The (partial) density of states (DOS) is calculated and differences between the pure and doped materials are studied. Results show that for the Co-doped materials, the valence bands are moving upward due to the existence of Co 3d electron states while the conductance bands are moving downward due to the reduced lattice constants. This results in the narrowed band gap of the doped materials. The complex dielectric indices and the absorption coefficients are calculated to examine the influences of the Co atoms on the optical properties. Results show that for the Co-doped materials, the absorption peaks in the high wavelength region are not as sharp and distinct as the undoped materials, and the absorption ranges are extended to even higher wavelength region.  相似文献   

2.
3.
Employing the accurate frozen-core full-potential projector augmented-wave method, the self-consistent electronic structure calculations were carried out on pure Ni, Pd, Pt and mixed Ni-Pd and Ni-Pt free-standing linear and zigzag nanowires. The bond lengths for all these systems are generally increased as their structures change from the linear to the zigzag chain. The bond lengths for Ni-Pd and Ni-Pt wires are in between the values of corresponding pure system and the bond angles around 60° suggesting the possible formation of Ni-Pd and Ni-Pt bimetallic materials. In mixed Ni-Pd and Ni-Pt chains, the Ni, Pd, and Pt atoms have quite high local magnetic moments. The calculations suggest that the magnetic moments in linear nanowires are generally larger than the ones of corresponding zigzag nanowires. It is found that there is hybridization between Ni 3d and Pd 4d, Ni 3d and Pt 5d states, which may significantly affect structural stability and magnetism of Ni-Pd and Ni-Pt nanowires.  相似文献   

4.
The elastic properties and electronic structure of B2 phase binary TiM (M =Fe, Co, Ni, Pd, Pt and Au) and ternary TisoNi43.75Pd6.25, TisoNi43.75Cu6.25 shape memory alloys are studied by the plane-wave psedudopotential method within the local density approximation. The elastic constants and density of states are calculated. Our calculations show that the martensitic transformation behaviour of these alloys is closely related to their elastic properties. The Ti d DOS at the Fermi level is mainly responsible for the B2 phase stability of these alloys.  相似文献   

5.
张莎  庞华  方阳  李发伸 《中国物理 B》2010,19(12):127102-127102
The electronic structures and magnetocrystalline anisotropy(MA) of ordered hexagonal close-packed(hcp) Co1-xNix alloys are studied using the full-potential linear-augmented-plane-wave(FLAPW) method with generalized gradient approximation(GGA).Great changes of magnetocrystalline anisotropy energy(MAE) are gained with different Ni compositions.Also,in-plane magnetocrystalline anisotropy is obtained for Co 15 Ni in which the Snoek’s limit is exceeded.It is found that the changes of the symmetry of the crystal field on Ni induce small variations in band structures around the Fermi level under different compositions,which plays an important role in modulating the magnetization direction,where the hybridization between Co-3d and Ni-3d orbits is of special importance in deciding the magnetocrystalline anisotropy of itinerant states.The rigid-band model is inapplicable to explain the evolution of magnetocrystalline anisotropy energy with Ni composition,and it is also inadequate to predict the magnetocrystalline anisotropy energy through the anisotropy of the orbital magnetic moment.  相似文献   

6.
The electronic structure and ionic dynamic properties of pure and Na doped (Li site) LiFePO4 have been investigated by first-principles calculations. The band gap of the Na doped material is much narrow than that of the undoped one, indicating of better electronic conductive properties. First-principles based molecular dynamic simulations have been performed to examine the migration energy barriers for the Li ion diffusion. The results shown that the energy barriers for Li diffusion decreased a little along the one-dimensional diffusion pathway, indicating that the ionic conductive property is also improved, as compared with the high valance doping (such as CF) cases.  相似文献   

7.
Zn1-xCoxO (x = 0.01, 0.02, 0.05, 0.10 and 0.20) diluted magnetic semiconductors are prepared by the sol-gel method. The structural and magnetic properties of the samples are studied using x-ray diffraction (XRD), extended x-ray absorption fine structure (EXAFS) and superconducting quantum interference device (SQUID). The XRD patterns does not show any signal of precipitates that are different from wurtzite type ZnO when Co content is lower than x = 0.10. An EXAFS technique for the Co K-edge has been employed to probe the local structures around Co atoms doped in ZnO powders by fluorescence mode. The simulation results for the first shell EXAFS signals indicate that Zn sites can be substituted by Co atoms when Co content is lower than x = 0.05. The SQUID results show that the samples (x 〈 0.05) exhibit clear hysteresis loops at 300K, and magnetization versus temperature from 5 K to 350K at H = 100 Oe for the sample x = 0.02 shows that the samples have ferromagnetism above room temperature. A double-exchange mechanism is proposed to explain the ferromagnetic properties of the samples.  相似文献   

8.
The possible defect models of Y^3+:PbWO4 crystals are discussed by defect chemistry and the most possible substituting positions of the impurity Y^3+ ions are studied by using the general utility lattice program (GULP). The calculated results indicate that in the lightly doped Y^3+ :PWO crystal, the main compensating mechanism is [2Ypb^+ + VPb^2-], and in the heavily doped Y^3+ :PWO crystal, it will bring interstitial oxygen ions to compensate the positive electricity caused by YPb^+, forming defect clusters of [2Ypb^+ +Oi^2-] in the crystal. The electronic structures of Y3+ :PWO with different defect models are calculated using the DV-Xα method. It can be concluded from the electronic structures that, for lightly doped cases, the energy gap of the crystal would be broadened and the 420nm absorption band will be restricted; for heavily doped cases, because of the existence of interstitial oxygen ions, it can bring a new absorption band and reduce the radiation hardness of the crystal.  相似文献   

9.
The structural,electronic,and magnetic properties of the Nd-doped Rare earth aluminate,La_(1-x)Nd_xAlO_3(x = 0%to 100%) alloys are studied using the full potential linearized augmented plane wave(FP-LAPW) method within the density functional theory.The effects of the Nd substitution in La AlO_3 are studied using the supercell calculations.The computed electronic structure with the modified Becke–Johnson(m BJ) potential based approximation indicates that the La_(1-x)Nd_xAlO_3 alloys may possess half-metallic(HM) behaviors when doped with Nd of a finite density of states at the Fermi level(E_F).The direct and indirect band gaps are studied each as a function of x which is the concentration of Nddoped La AlO_3.The calculated magnetic moments in the La_(1-x)Nd_xAlO_3 alloys are found to arise mainly from the Nd-4f state.A probable half-metallic nature is suggested for each of these systems with supportive integral magnetic moments and highly spin-polarized electronic structures in these doped systems at E_F.The observed decrease of the band gap with the increase in the concentration of Nd doping in La AlO_3 is a suitable technique for harnessing useful spintronic and magnetic devices.  相似文献   

10.
The electronic structure and diffusion energy barriers of Li ions in pure and Mn-doped LiFePO4 have been studied using density functional theory (DFT). The results demonstrate clearly that Fe - O covalent bond is weaker than P- O covalent bond. Pure LiFePO4 has band gap of 0.56 eV and diffusion energy barrier of 2.57 eV for Li ions, while the dopant has small band gap of 0.25 eV and low diffusion energy barrier of 2.31 eV, which indicates that the electronic and ionic conductivity of LiFePO4 have been improved owing to doping.  相似文献   

11.
This study presents the synthesis of TiO2 doped with different amounts of Co and Ni, starting from a simple metallic titanium powder. A successful electrophoretic deposition of these materials on ITO electrodes was achieved for its potential application as photoanodes. EDX, diffuse reflectance UV–Vis spectroscopy, and XRD measurements gave information on the chemical composition of the material and the location of the Ni or Co within the crystal structure of TiO2. Raman spectroscopy suggests that for a higher content of doping metal above a defined percentage, the formation of metal oxide is promoted. A preliminary study of photoelectrocatalytic orange dye degradation shows higher color removal efficiency as compared to the commercial TiO2 material.  相似文献   

12.
Using a density functional approach calculation, the structural, energetic and electronic properties of Mg2Ni phase as well as its high/low temperature (HT/LT)-Mg2NiH4 complex hydrides are systematically investigated. The optimized structural parameters including lattice constants and atomic positions are very close to the experimental data determined from X-ray and neutron powder diffraction. A detailed study of the electronic structures including the energy band, density of states (DOS) and charge density distribution reveals the orbital hybridization and characteristics of bonding orbits within Mg2Ni and its hydrides. Based on the calculated results of the reaction heat of hydrogenation, enthalpy of formation and energy cost to remove H atoms, it is found that the formation ability of LT-Mg2NiH4 is higher than that of the HT phase during the hydrogenation of Mg2Ni alloy; moreover, LT-Mg2NiH4 has a relatively higher structural stability than HT phase, which is also well explained through the DOS and the charge distributions of HT/LT-Mg2NiH4 phases.  相似文献   

13.
丁迎春  向安平  徐明  祝文军 《物理学报》2007,56(10):5996-6002
采用基于密度泛函的平面赝势方法(PWP)和广义梯度近似(GGA),计算了未掺杂和掺杂稀土(Y,La)的γ-Si3N4中N-Y(La)键的布居值和它们的键长、掺杂后能带结构和态密度.发现掺杂后的带隙要减小,并且可能形成新的半导体,这将为找到新的半导体提供一个方向.还进一步研究了掺杂稀土(Y,La)后的光学性质,掺杂后有更高的静态介电常数,可以作为新的介电材料和好的折射材料,这对于一定的光学元件有潜在的应用前景.  相似文献   

14.
The geometries, stabilities, electronic and magnetic properties of ConRh (n=1-8) clusters have been investigated systematically within the framework of the generalized gradient approximation density-functional theory. The results indicate that the most stable structures of ConRh (n=1-8) clusters are all similar to those of corresponding Con+1 clusters. Maximum peaks of second-order energy difference are found at n=2, 4 and 7, indicating that these clusters possess relatively higher stability than their respective neighbors. The magnetism of the ground state of alloy clusters all displays ferromagnetic coupling except for Co3Rh. In addition, the doped Rh atom exhibits an important influence on the magnetism of alloy clusters, e.g., compared with corresponding pure Con clusters, the local moment of Co atom is noticeably enhanced in ConRh alloy clusters at n=1, 2, 5, 6, 7 and 8, while reduced at n=3 and 4. Further analysis based on the average bond length, the charge transfer and the spin polarization has been made to clarify the different magnetic responses to Rh doping.  相似文献   

15.
左都罗  李道火 《物理学报》1994,43(3):424-432
采用经表面优化的对称球形团簇作Si34,Si晶态量子点的模型,利用紧束缚近似和recursion方法研究了它们的电子结构,给出了导带底和价带顶位置随量子点尺寸的变化。得到了328原子Si34量子点、323原子Si量子点的中心原子局域态密度及平均态密度,并讨论了态密度和光谱结构的关系,中心原子局域态密度能较好地描述量子点的光谱,这一点得到了实验结果的证实。 关键词:  相似文献   

16.
The electronic and magnetic properties of wurtzite ZnS semiconductor doped with transition metal (Cr, Mn, Fe, Co, and Ni) atoms are studied by using the first-principle’s method in this paper. The ZnS bulk materials doped with Cr, Fe, and Ni are determined to be half-metallic, while those doped with Mn and Co impurities are found to be semiconducting. These doped transition metal ions have long range interactions mediated through the induced magnetic moments in anions and cations of host semiconductors. These doped ZnS-based diluted magnetic semiconductors seem to be good candidates for the future spintronic applications.  相似文献   

17.
陈丽  李华 《物理学报》2004,53(3):922-926
用MS-Xα方法研究了非氧化物超导材料MgCNi3的电子结构. 研究结果显示, 态密度分布曲线的主峰靠近Fermi面, 主要来自于Ni的d电子的贡献. 用T(T=Co,Mn,Cu)替代MgCNi3中的部分Ni形成化合物MgCNi2T,替代使Ni的价电子数减小, 价态发生变化, Fermi面处态密度N(EF)减小. 计算结果表明:无论是电子掺杂(Cu)还是空穴掺杂(Co,Mn),MgCNi3的超导电 关键词: 电子结构 态密度 超导电性  相似文献   

18.
利用X射线近边吸收谱对Fe2P,Ni2P及其掺杂物(Fe1-xNix)2P(x=01,025,05)中Fe,Ni,P的K边进行了研究.结合多重散射理论近边计算,讨论了金属原子不同位置格点3f,3g对近边谱特征的贡献,得出当Ni原子取代Fe原子时将优先占据Fe(3f)格点位置;根据第一性原理对能态的计算发现,不考虑磁性时不同格点P的pDOS未占据态电子结构与P-K近边吸收谱实验相符合;与考虑铁磁性Fe2P 的DOS相比较后结果显示Fe2P的磁性主要来源于Fe(3g)格点,铁磁性Ni2P计算的Ni不同格点原子磁矩均接近于0,与它一般显顺磁性结论相一致. 关键词: X射线近边吸收谱 电子结构 多重散射理论 态密度  相似文献   

19.
Utilizing first-principles calculations, the electronic structures, magnetic properties and band alignments of monolayer MoS2 doped by 3d transition metal atoms have been investigated. It is found that in V, Cr, Mn, Fe-doped monolayers, the nearest neighboring S atoms (SNN) are antiferromagnetically polarized with the doped atoms. While in Co, Ni, Cu, Zn-doped systems, the SNN are ferromagnetically coupled with the doped atoms. Moreover, the nearest neighboring Mo atoms also demonstrate spin polarization. Compared with pristine monolayer MoS2, little change is found for the band edges' positions in the doped systems. The Fermi level is located in the spin-polarized impurity bands, implying a half-metallic state. These results provide fundamental insights for doped monolayer MoS2 applying in spintronic, optoelectronic and electronic devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号