共查询到20条相似文献,搜索用时 15 毫秒
1.
Forward and reverse electron transport properties across a CdS/Si multi-interface nanoheterojunction
下载免费PDF全文

The electron transport behavior across the interface plays an important role in determining the performance of op- toelectronic devices based on heterojunctions. Here through growing CdS thin film on silicon nanoporous pillar array, an untraditional, nonplanar, and multi-interface CdS/Si nanoheterojunction is prepared. The current density versus voltage curve is measured and an obvious rectification effect is observed. Based on the fitting results and model analyses on the forward and reverse conduction characteristics, the electron transport mechanism under low forward bias, high forward bias, and reverse bias are attributed to the Ohmic regime, space-charge-limited current regime, and modified Poole-Frenkel regime respectively. The forward and reverse electrical behaviors are found to be highly related to the distribution of inter- facial trap states and the existence of localized electric field respectively. These results might be helpful for optimizing the preparing procedures to realize high-performance silicon-based CdS optoelectronic devices. 相似文献
2.
Peng Fei Ji Yong Li Yue Li Song Feng Qun Zhou Ming Li Tian Shu Qing Yuan 《Physics letters. A》2019,383(26):125841
CdS/Si heterojunctions have been prepared through growing CdS nanocrystallites (nc-CdS) on the silicon nanoporous pillar array (Si-NPA) by the chemical bath deposition method. Cadmium nanocrystallites (nc-Cd) have been observed and ascribed to the reducibility of Si-NPA. The reason for the appearance of CdO is indistinct and the related work will be done in the future. The blue, green and red emissions are ascribed to the silicon oxide layer, band gap of nc-CdS and the sulphur vacancies, respectively. Redshift and blueshift with the annealing temperature about green emissions are contributed to quantum size effect and the structure transition from nc-Cd to CdO. It is beneficial for investigating the structures and defects to the application of CdS/Si in the optoelectronic field. 相似文献
3.
以硅纳米孔柱阵列(Si-NPA)为衬底、用化学气相沉积法制备了具有规则阵列结构特征的ZnO/Si-NPA纳米复合体系,并对其结构和光致发光性质进行了表征. 实验结果显示,组成ZnO/Si-NPA表面阵列的每个柱子均呈现层壳结构. 不同于衬底Si-NPA的红光和蓝光发射,ZnO/Si-NPA在紫外光区和蓝绿光区呈现出两个强的宽发光峰. 分析表明,紫外光发射应归因于ZnO晶体的带边激子跃迁;而蓝绿光发射则来自于ZnO晶体本征缺陷所形成的两类深能级复合中心上载流子的辐射跃迁. 相似文献
4.
一种自支撑金纳米薄膜的制备、结构和氮吸附特性 总被引:2,自引:0,他引:2
以一种新的硅微米/纳米结构复合体系——硅纳米孔柱阵列作为还原性衬底,采用浸渍技术制备出一种自支撑的金纳米薄膜,并对其表面形貌和结构进行了表征.实验表明,金纳米薄膜的制备过程是一个自终止过程.当硅纳米孔柱阵列被耗尽后,浸渍溶液中Au3+的还原反应将自行终止;同时,所形成的金纳米薄膜自动与衬底脱离并成为一种自支撑薄膜.薄膜的形成机理被归因于硅纳米孔柱阵列所具有的高的表面活性和还原性.用能量弥散x射线谱对薄膜表面化学成分分析的结果表明,如此制备的金纳米薄膜具有很强的氮吸附和氮储存能力.这一特性有可能在气体传感器、空气分离和氮纯化以及氮化合物的膜合成器等技术领域得到应用.关键词:自支撑金纳米薄膜硅纳米孔柱阵列浸渍技术 相似文献
5.
硅纳米孔柱阵列的结构和光学特性研究 总被引:16,自引:0,他引:16
采用水热腐蚀技术在单晶硅衬底上制备出一种新的硅微米/纳米结构复合体系——硅纳米孔柱阵列(Si-NPA),并对其表面形貌、结构及光学特性进行研究.Si-NPA的结构复合性体现为 在微米和纳米两个尺度上形成了三个分明的结构层次,即微米尺度的硅柱阵列结构、硅柱上 的纳米多孔结构以及组成孔壁的硅纳米晶粒.积分光反射谱和荧光光谱测试表明,Si-NPA具 有良好的光吸收和光致发光特性.依据Si-NPA积分反射谱的实验数据,采用Kramers-Kronig 变换关系计算得到了Si-NPA的复折射率和复介电函数、吸收系数等光学常数,并由此讨论了 Si-NPA相对于单晶硅的光学特性发生显著变化的原因.最后,通过分析Si-NPA的光吸收系数 与入射光子能量之间的关系,揭示出Si-NPA具有直接带隙半导体的电子结构特征,而且理论 计算得到的Si-NPA的带隙能与其光致发光谱的峰位能很好符合.关键词:硅纳米孔柱阵列光学特性电子结构水热腐蚀 相似文献
6.
7.
Wei Fen Jiang Hao Shan HaoYu Sheng Wang Lei XuTian Jie Zhang 《Applied Surface Science》2011,257(15):6336-6339
We investigated the influence of growth time on field emission properties of multi-walled carbon nanotubes deposited on silicon nanoporous pillar array (MWCNTs/Si-NPA), which were fabricated by thermal chemical vapour deposition at 800 °C for 5, 15 and 25 min respectively, to better understand the origins of good field emission properties. The results showed that the MWCNTs/Si-NPA grown for 15 min had the highest field emission efficiency of the three types of samples. Morphologies of the products were examined by field-emission scanning electron microscope, and the excellent field emission performance was attributed not only to the formation of a nest array of multi-walled carbon nanotubes, which would largely reduce the electrostatic shielding among the emitters and resulted in a great enhancement factor, but also to the medium MWCNTs density films, there was an ideal compromise between the emitter density and the intertube distance, which also could effectively avoid electrostatic shielding effects, along with a high emitter density. 相似文献
8.
Large-area silicon nanoporous pillar arrays (Si-NPA) uniformly coated with gold nanoparticles was synthesized, and surface-enhanced Raman scattering of rhodamine 6G adsorbed on these gold nanoparticles were studied and compared. It's found that Au/Si-NPA substrate has a significantly high Raman signal sensitivity and good homogeneity. These are attributed to gold nanoparticles with narrow particle-size distribution uniformly coated on the surface and to the enlarged specific surface area for adsorption of target molecules brought by the porous silicon pillars. 相似文献
9.
A large scale nest array of multi-walled carbon nanotubes (NACNTs) was grown on silicon nanoporous pillar array (Si-NPA) by thermal chemical vapor deposition. Through observing its macro/micromorphology and structure, ascertaining the catalyst component and its locations at different growth time by hiring field emission scanning electron microscopy, transmission electron microscopy (TEM), high-resolution TEM, and selected area electron diffraction, the growth process was deduced. Its thermal properties were also investigated by using a thermogravimetric analyzer. Our experiments demonstrated that the CNTs growth by means of root-growth mechanism at the initial growth stage, then a continuous growth process with its tip open is suggested, finally, a schematic growth model of NACNT/Si-NPA was presented. 相似文献
10.
Jingshu Guo Chaoyue Liu Laiwen Yu Hengtai Xiang Yuluan Xiang Daoxin Dai 《Laser u0026amp; Photonics Reviews》2023,17(4):2200555
2D materials (2DMs) meet the demand of broadband and low-cost photodetection on silicon for many applications. Currently, it is still very challenging to realize excellent silicon-2DM photodetectors (PDs). Here, graphene–silicon–graphene waveguide PDs operating at the wavelength bands of 1.55 and 2 µm, showing the potential for large-scale integration, are demonstrated. For the fabricated PDs, the measured responsivities are ≈0.15 and ≈0.015 mA W−1 for the wavelengths of 1.55 and 1.96 µm, respectively. In particular, the PDs exhibit a high bandwidth of ≈30 GHz, an ultra-low dark current of tens of pico-amperes, a high normalized photo-to-dark-current ratio of 1.63 × 106 W−1, as well as a high linear dynamic range of 3 µW to 1.86 mW (and beyond) at 1.55 µm. According to the measurement results for the wavelength bands of 1.55/2.0 µm and the theoretical modeling for the silicon–graphene heterostructure, it is revealed that internal photoemission and photo-assisted thermionic field emission dominantly contribute to the photoresponse in the graphene–silicon Schottky junctions under moderately high bias voltage, which helps the future work to further improve the performance. 相似文献
11.
Hai Jun Xu De Yao Li Xin Jian Li 《Physica E: Low-dimensional Systems and Nanostructures》2009,41(10):1882-1885
Silicon nanoporous pillar array (Si-NPA) is fabricated by hydrothermally etching single crystal silicon (c-Si) wafers in hydrofluoric acid containing ferric nitrate. Microstructure studies disclosed that it is a typical micron/nanometer structural composite system with clear hierarchical structures. The optical parameters of Si-NPA were calculated by general light-absorption theory and Kramers–Kronig relations based on the experimental data of reflectance and the variations compared with the counterparts of c-Si were analyzed. The features of the electronic band structure deduced from the optical measurements strongly indicate that Si-NPA material is a direct-band-gap semiconductor and possesses separated conduction sub-bands which accords with conduction band splitting caused by silicon nanocrystallites several nanometers in size. All these electronic and optical results are due to the quantum confinement effect of the carriers in silicon nanocrystallites. 相似文献
12.
Wei Fen Jiang Yan Feng Zhang Yu Sheng Wang Lei Xu Xin Jian Li 《Applied Surface Science》2011,258(5):1662
A novel composite structure, Au nanoparticles coated on a nest-shaped array of carbon nanotube nested into a silicon nanoporous pillar array (Au/NACNT/Si-NPA), was fabricated for surface-enhanced Raman scattering (SERS). The morphology of the Au/NACNT/Si-NPA composite structure was characterized with the aid of scanning electron microscopy, X-ray diffraction instrumentation and Transmission electron microscopy. Compared with SERS of rhodamine 6G (R6G) adsorbed on SERS-active Au substrate reported, the SERS signals of R6G adsorbed on these gold nanoparticles were obviously improved. This was attributed to the enlarged specific surface area for adsorption of target molecules brought by the nest-shaped CNTs structure. 相似文献
13.
\"通过热化学气相沉积的方法将碳纳米管生长到硅纳米孔柱阵列衬底上.采用场发射扫描电子显微镜、透射电子显微镜、高分辨透射电子显微镜、拉曼光谱和X射线能谱对所制备的样品形貌、组成进行了分析.结果发现:所制备产物为一种具有面积大、准周期性的碳纳米管/硅巢状阵列复合结构.能谱分析表明碳纳米管仅含有碳元素.对样品进行场发射性能测试表明该结构开启电压为1.3 MV/m,当外加电压为4.26 MV/m,发射电流为5 mA/cm2.由FN公式计算相应的场增强因子约为1.1£104.碳纳米管/硅纳米孔柱阵列好的场发射性能被归 相似文献
14.
High-quality oxide semiconductor ZnO thin films were prepared onsingle-crystal sapphire and LaAlOZnO薄膜 氩氢混合气体 薄膜生长 异质结构 薄膜物理学 ZnO, PLD, heterostructure Project supported by the National Natural Science Foundation of China (Grant No 19974001) and the National Key Basic Research Special Foundation of China (Grant No NKBRSF G1999064604 and G2000036505). 2005-05-30 9/3/2005 12:00:00 AM High-quality oxide semiconductor ZnO thin films were prepared on single-crystal sapphire and baAlO3 substrates by pulsed laser deposition (PLD) in the mixture gas of hydrogen and argon. Low resistivity n-type ZnO thin films with smoother surface were achieved by deposition at 600℃ in 1Pa of the mixture gas. in addition, ferromagnetism was observed in Co-doped ZnO thin films and rectification Ⅰ - Ⅴ curves were found in p-GaN/n-ZnO and p-CdTe/n-ZnO heterostructure junctions. The results indicated that using mixture gas of hydrogen and argon in PLD technique was a flexible method for depositing high-quality n-type oxide semiconductor films, especially for the multilayer thin film devices. 相似文献
15.
Quantum transport properties of two-dimensional electron gas (2DEG) in undoped MgZnO/ZnO heterostructures with polarization charge effect have been investigated theoretically. Polarization roughness scattering (PRS) combining polarization charge and interface roughness scattering was proposed as a new scattering mechanism. It was found that the carriers confined in the heterostructures (HSs) would be scattered from polarization charges when they were moving along the in-plane and PRS played a very important role for the low-temperature electron mobility when the electron density Ns exceeded 1.0e11 cm−2, especially in a higher electron density region. With PRS, the experimental data on the density dependence of 2DEG mobility in the MgZnO/ZnO HSs under study can be well reproduced. The study indicates that the improved processing techniques providing a smooth interface and a good separation between the 2DEG electrons and the polarization charges should be significant for the quantum device’s performance. 相似文献
16.
The n-ZnO/p-Si heterojunction was fabricated by depositing high quality single crystalline aluminium-doped n-type ZnO film on p-type Si using the laser molecular beam epitaxy technique. The heterojunction exhibited a good rectifying behavior. The electrical properties of the heterojunction were investigated by means of temperature dependence current density-voltage measurements. The mechanism of the current transport was proposed based on the band structure of the heterojunction. When the applied bias V is lower than 0.15 V, the current follows the Ohmic behavior. When 0.15V 0.6 V), the space charge limited effect becomes the main transport mechanism. The current-voltage characteristic under illumination was also investigated. The photovoltage and the short circuit current density of the heterojunction aproached 270 mV and 2.10 mA/cm 2 , respectively. 相似文献
17.
采用简单的两步水热法合成了不同In2O3质量比的In2O3/ZnO异质结复合材料.通过X射线衍射仪(XRD)、紫外-可见分光光度计(UV-vis)和扫描电子显微镜(SEM)对复合材料的结构、形貌和性能进行了表征.同时还使用UV-vis分光光度计测试了异质结降解罗丹明B(RhB)的光催化活性.实验结果表明,与纯ZnO和In2O3相比,In2O3的引入将ZnO的吸收光谱扩展到可见光区域,从而提高了其光生电子和空穴的分离.此外,In2O3/ZnO异质结在可见光照射对RhB具有较高的光催化活性.5 wt%-In2O3/ZnO异质结对RhB的降解率为84.3%,且具有良好的光催化稳定性.In2O3/ZnO异质结复合材料在有机染料废水的降解中有更广阔的应用前景. 相似文献
18.
ZnO films have been prepared on p-type Si substrates by metal-organic chemical vapour deposition (MOCVD) at different total gas flow rates. The current versus voltage and temperature (I - V - T) characteristics, the deep-level transient spectroscopy (DLTS) and the photoluminescence (PL) spectra of the samples were measured. DLTS shows two deep-level centres of E1 (Ec-0.13±0.02eV) and E2 (Ec-0.43±0.05eV) in sample 1202a, which has a ZnO/p-Si heterostructure. A deep level at Ec-0.13±0.01 eV was also obtained from the I -T characteristics. It was considered to be the same as E1 obtained from DLTS measurement. The emission related to this deep level center was detected by PL spectra. In addition, the energy location and the relative trap density of E1 was varied when the total gas flow rate was changed. 相似文献
19.
异质结结构界面的能带带阶是一个非常重要的参数,该参数的精确确定直接影响异质结的光电性质研究以及异质结在光电器件上的应用.利用同步辐射光电子能谱技术测量了ZnO/PbTe异质结结构的能带带阶.测量得到该异质结价带带阶为2.56 eV,导带带阶为0.49 eV,是一个典型的类型I的能带排列.利用变厚度扫描的测量方法发现,ZnO/PbTe界面存在两种键,分别是Pb—O键(低结合能)和Pb—Te键(高结合能).在ZnO/PbTe异质结界面的能带排列中导带带阶较小,而价带带阶较大,这一能带结构有利于PbTe中的激发电子输运到ZnO导电层中.该类结构在新型太阳电池、中红外探测器、激光器等器件中具有潜在的应用价值. 相似文献
20.
报道了硅纳米孔柱阵列(Si-NPA),Fe3O4复合的Si-NPA(Fe 3O4/Si-NPA)两种薄 膜材料的制备方法并对其形貌和结构进行了表征,研究了其电容湿度传感特性.结果表明,S i-NPA,Fe3O4/Si-NPA均为微米/纳米结构复合体系.当环境相对湿 度从11%上升到95% 时,采用100 Hz的信号频率进行测试,以Si-NPA和Fe3O4/Si-NPA 为电介质材料制成的湿 敏元件的电容增加值分别为起始值的1500%和5500%;采用1000 Hz的信号频率测试时,则 分别为起始值的800%和12000%,显示出两种材料较高的湿度灵敏性和较强的绝对电容输出 信号强度.同时,在升湿和降湿过程中,Si-NPA,Fe3O4/Si-NPA都 具有较快的响应速度 ,其响应时间分别为15 s,5 s和20 s,15 s.文章结合材料的形貌和结构特性对其物理机理 进行了分析.上述结果表明,Si-NPA无论是直接作为湿度薄膜传感材料还是作为复合薄膜湿 度传感材料的衬底都具有很好的前景.关键词:硅纳米孔柱阵列3O4')\" href=\"#\">Fe3O4湿度电容传感特性 相似文献