首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 388 毫秒
1.
Qiang-Tao Sui 《中国物理 B》2022,31(9):97403-097403
Modulated electronic state due to the layered crystal structures brings about moderate anisotropy of superconductivity in the iron-based superconductors and thus Abrikosov vortices are expected in the mixed state. However, based on the angular and temperature dependent transport measurements in iron-based superconductor Ca$_{10}$(Pt$_3$As$_8$)((Fe$_{0.9}$Pt$_{0.1}$)$_2$As$_2$)$_5$ with $T_{\rm c} \simeq 12$ K, we find clear evidences of a crossover from Abrikosov vortices to Josephson vortices at a crossover temperature $T^{\star} \simeq 7 $ K, when the applied magnetic field is parallel to the superconducting FeAs layers, i.e., the angle between the magnetic field and the FeAs layers $\theta = 0^\circ$. This crossover to Josephson vortices is demonstrated by an abnormal decrease (increase) of the critical current (flux-flow resistance) below $T^{\star}$, in contrast to the increase (decrease) of the critical current (flux-flow resistance) above $T^{\star}$ expected for Abrikosov vortices. Furthermore, when $\theta$ is larger than $0.5^\circ$, the flux-flow resistance and critical current have no anomalous behaviors across $T^{\star}$. These anomalous behaviors can be understood in terms of the distinct transition from the well-pinned Abrikosov vortices to the weakly-pinned Josephson vortices upon cooling, when the coherent length perpendicular to the FeAs layers $\xi_\bot$ becomes shorter than half of the interlayer distance $d/2$. These experimental findings indicate the existence of intrinsic Josephson junctions below $T^{\star}$ and thus quasi-two-dimensional superconductivity in Ca$_{10}$(Pt$_3$As$_8$)((Fe$_{0.9}$Pt$_{0.1}$)$_2$As$_2$)$_5$, similar to those in the cuprate superconductors.  相似文献   

2.
By simulating the electron paramagnetic resonance (EPR) and optical spectra on the basis of the 120×120 complete energy matrix, this paper determines the local lattice structure parameters R1 and R2 for MCl:V2+ (M=Na, K, Rb) systems at 77 K, 195 K and RT (room temperature 295 K or 302 K), respectively. The theoretical results indicate that there exists a compressed distortion in MCl:V2+ systems. Meanwhile, it finds that the structure parameters R1, R2 and |△R| (= R1-R2) increase with the rising temperature. Subsequently, from the analysis it concludes that the relation of EPR parameter D vs.△R is approximately linear. Finally, the effects of orbital reduction factor k on the g factors for the three systems have been discussed.  相似文献   

3.
《中国物理 B》2021,30(7):77501-077501
The magnetism and magnetocaloric effect(MCE) of rare-earth-based tungstate compounds R_3 BWO_9(R=Gd,Dy,Ho) have been studied by magnetic susceptibility,isothermal magnetization,and specific heat measurements.No obvious long-range magnetic ordering can be found down to 2 K.The Curie-Weiss fitting and magnetic susceptibilities under different applied fields reveal the existence of weak short-range antiferromagnetic couplings at low temperature in these systems.The calculations of isothermal magnetization exhibit a giant MCE with the maximum changes of magnetic entropy being 54.80 J/kg-K at 2 K for Gd_3 BWO_9,28.5 J/kg-K at 6 K for Dy_3 BWO_9,and 29.76 J/kg-K at 4 K for Ho_3 BWO_9,respectively,under a field change of 0-7 T.Especially for Gd_3 BWO_9,the maximum value of magnetic entropy change(-ΔS_M~(max)) and adiabatic temperature change(-ΔT_(ad)~(max)) are 36.75 J/kg·K and 5.56 K for a low field change of 0-3 T,indicating a promising application for low temperature magnetic refrigeration.  相似文献   

4.
沈俊  王芳  李养贤  孙继荣  沈保根 《中国物理》2007,16(12):3853-3857
Magnetic properties and magnetocaloric effects of Tb6Co1.67Si3 have been investigated by magnetization measurement. This compound is of a hexagonal Ce$_{6}$Ni$_{2}$Si$_{3}$-type structure with a saturation magnetization of 187\,emu/g at 5\,K and a reversible second-order magnetic transition at Curie temperature $T_{\rm C} = 186$\,K. A magnetic entropy change $\Delta S = 7$\,J\,$\cdot$\,kg$^{-1}$\,$\cdot$\,K$^{-1}$ is observed for a magnetic field change from 0 to 5\,T. A large value of refrigerant capacity (RC) is found to be 330\,J/kg for fields ranging from 0 to 5\,T. The large RC, the reversible magnetization around $T_{\rm C}$ and the easy fabrication make the Tb6Co1.67Si3 compound a suitable candidate for magnetic refrigerants in a corresponding temperature range.  相似文献   

5.
In this article, we assume that there exist the pseudoscalar $D\bar{D}_{s0}^*(2317)$ and $D^*\bar{D}_{s1}^*(2460)$ molecular states $Z_{1,2}$ and construct the color singlet-singlet molecule-type interpolating currents to study their masses with the QCD sum rules. In calculations, we consider the contributions of the vacuum condensates up to dimension-10 and use the formula $\mu=\sqrt{M_{X/Y/Z}^{2}-(2{\mathbb{M}}_{c})^{2}}$ to determine the energy scales of the QCD spectral densities. The numerical results, $M_{Z_1}=4.61_{-0.08}^{+0.11}\,\text{GeV}$ and $M_{Z_2}=4.60_{-0.06}^{+0.07}\,\text{GeV}$, which lie above the $D\bar{D}_{s0}^*(2317)$ and $D^*\bar{D}_{s1}^*(2460)$ thresholds respectively, indicate that the $D\bar{D}_{s0}^*(2317)$ and $D^*\bar{D}_{s1}^*(2460)$ are difficult to form bound state molecular states, the $Z_{1,2}$ are probably resonance states.  相似文献   

6.
7.
The structures and properties of Wn (n=2--14) clusters were studied by using the density functional theory (DFT) at LSDA level. The most stable structures of Wn (n=2--14) clusters with global minimum were determined. The average binding energy (Eb), the first and second difference of total energy (\itδ E, \itδ2E), the vertical detachment energy (VDE), and the HOMO-LUMO gap versus the size were also discussed. The abrupt decrease of VDE and HOMO-LUMO gap at size n=8 and 10 implied that tungsten clusters of W8 and W10 appeared to have metallic features. These changes were also accompanied by the delocalization of electron charge density and the strong hybridization between 5d and 6s orbits in W8 and W_10 clusters. Our results are in good agreement with the available experimental data.  相似文献   

8.
Tina Raoufi  Jincheng He 《中国物理 B》2023,32(1):17504-017504
We present a study on the magnetocaloric properties of a CaBaCo$_{4}$O$_{7}$ polycrystalline cobaltite along with research on the nature of magnetic phase transition. The magnetization as a function of temperature identifies the ferrimagnetic to paramagnetic transition at a Curie temperature of 60 K. Moreover, a Griffiths-like phase is confirmed in a temperature range above $T_{\rm C}$. The compound undergoes a crossover from the first to second-order ferrimagnetic transformation, as evidenced by the Arrott plots, scaling of the universal entropy curve, and field-dependent magnetic entropy change. The maximum of entropy change is 3 J/kg$\cdot$K for $\Delta H = 7$ T at ${T}_{\rm C}$, and a broadening of the entropy peak with increasing magnetic field indicates a field-induced transition above $T_{\rm C}$. The analysis of the magnetic entropy change using the Landau theory reveals the second-order phase transition and indicates that the magnetocaloric properties of CaBaCo$_{4}$O$_{7}$ are dominated by the magnetoelastic coupling and electron interaction. The corresponding values of refrigerant capacity and relative cooling power are estimated to be 33 J/kg and 42 J/kg, respectively.  相似文献   

9.
We consider the polynomial inflation with the tensor-to-scalar ratio as large as possible which can be consistent with the quantum gravity(QG) corrections and effective field theory(EFT). To get a minimal field excursion Δ? for enough e-folding number N, the inflaton field traverses an extremely flat part of the scalar potential, which results in the Lyth bound to be violated. We get a CMB signal consistent with Planck data by numerically computing the equation of motion for inflaton ? and using Mukhanov–Sasaki formalism for primordial spectrum. Inflation ends at Hubble slow-roll parameter ■. Interestingly, we find an excellent practical bound on the inflaton excursion in the format ■, where a is a tiny real number and b is at the order 1. To be consistent with QG/EFT and suppress the high-dimensional operators, we show that the concrete condition on inflaton excursion is ■. For n_s= 0.9649,N_e= 55, and ■0.632 MPl, we predict that the tensor-to-scalar ratio is smaller than 0.0012 for such polynomial inflation to be consistent with QG/EFT.  相似文献   

10.
The green and red up-conversion emissions centred at about 534, 549 and 663 nm of wavelength, corresponding respectively to the ^2H11/2 → ^4I15/2, ^4S3/2 → ^4I15/2 and ^4F9/2 → ^4I15/2 transitions of Er^3+ ions, have been observed for the Er^3+-doped silicate glass excited by a 978 nm semiconductor laser beam. Excitation power dependent behaviour of the up-conversion emission intensity indicates that a two-photon absorption up-conversion process is responsible for the green and red up-conversion emissions. The temperature dependence of the green up-conversion emissions is also studied in a temperature range of 296-673 K, which shows that Er^3+-doped silicate glass can be used as a sensor in high-temperature measurement.  相似文献   

11.
Yong Li 《中国物理 B》2022,31(8):87103-087103
The crystal structure, martensitic transformation and magnetocaloric effect have been studied in all-$d$-metal Ni$_{35}$Co$_{15}$Mn$_{33}$Fe$_{2}$Ti$_{15}$ alloy ribbons with different wheel speeds (15 m/s (S15), 30 m/s (S30), and 45 m/s (S45)). All three ribbons crystalize in B2-ordered structure at room temperature with crystal constants of 5.893(2) Å, 5.898(4) Å, and 5.898(6) Å, respectively. With the increase of wheel speed, the martensitic transformation temperature decreases from 230 K to 210 K, the Curie temperature increases slightly from 371 K to 378 K. At the same time, magnetic entropy change ($\Delta S_{\rm m}$) is also enhanced, as well as refrigeration capacity ($RC$). The maximum $\Delta S_{\rm m}$ of 15.6(39.7) J/kg$\cdot$K and $RC$ of 85.5 (212.7) J/kg under $\Delta H = 20$ (50) kOe (1 ${\rm Oe}=79.5775$ A$\cdot$m$^{-1}$) appear in S45. The results indicate that the ribbons could be the candidate for solid-state magnetic refrigeration materials.  相似文献   

12.
李成仁 《物理学报》2008,57(1):224-227
The green and red up-conversion emissions centred at about 534, 549 and 663\,nm of wavelength, corresponding respectively to the ${^{2}}H_{11 / 2} \to {^{4}}I_{15 / 2}$, ${^{4}}S_{3 / 2} \to {^{4}}I_{15 / 2}$ and ${^{4}}F_{9 / 2} \to {^{4}}I_{15 / 2}$ transitions of Er$^{3 + }$ ions, have been observed for the Er$^{3 + }$-doped silicate glass excited by a 978\,nm semiconductor laser beam. Excitation power dependent behaviour of the up-conversion emission intensity indicates that a two-photon absorption up-conversion process is responsible for the green and red up-conversion emissions. The temperature dependence of the green up-conversion emissions is also studied in a temperature range of 296--673\,K, which shows that Er$^{3 + }$-doped silicate glass can be used as a sensor in high-temperature measurement.  相似文献   

13.
Hao Sun 《中国物理 B》2022,31(11):117503-117503
The magnetic and magnetocaloric effects (MCE) of the amorphous $RE_{55}$Co$_{30}$Al$_{10}$Si$_{5}$ ($RE={\rm Er}$ and Tm) ribbons were systematically investigated in this paper. Compounds with $R ={\rm Er}$ and Tm undergo a second-order magnetic phase transition from ferromagnetic (FM) to paramagnetic (PM) around Curie temperature $T_{\rm C} \sim 9.3$ K and 3 K, respectively. For Er$_{55}$Co$_{30}$Al$_{10}$Si$_{5}$ compound, an obvious magnetic hysteresis and thermal hysteresis were observed at low field below 6 K, possibly due to spin-glass behavior. Under the field change of 0 T-5 T, the maximum values of magnetic entropy change ($-\Delta S_{\rm M}^{\rm max}$) reach as high as 15.6 J/kg$\cdot$K and 15.7 J/kg$\cdot$K for Er$_{55}$Co$_{30}$Al$_{10}$Si$_{5}$ and Tm$_{55}$Co$_{30}$Al$_{10}$Si$_{5}$ compounds, corresponding refrigerant capacity (RC) values are estimated as 303 J/kg and 189 J/kg, respectively. The large MCE makes amorphous $RE_{55}$Co$_{30}$Al$_{10}$Si$_{5 }$ ($RE={\rm Er}$ and Tm) alloys become very attractive magnetic refrigeration materials in the low-temperature region.  相似文献   

14.
The growth of Mn5Ge3 ultrathin films with different thicknesses, prepared by solid phase epitaxy, is studied. The results of scanning tunnelling microscopy and low energy electron diffraction studies show that the film can be formed and it is terminated with a (√3 × √3) R30° surface reconstruction when the thickness of Mn exceeds 3 monolayers. The magnetic properties show that the Curie temperature is about 300 K and the T^2-dependent behaviour is observed to remain up to 220 K.  相似文献   

15.
《中国物理 B》2021,30(7):77302-077302
Two-dimensional electron gases(2 DEGs) formed at the interface between two oxide insulators present a promising platform for the exploration of emergent phenomena.While most of the previous works focused on SrTiO_(3-)based 2 DEGs,here we took the amorphous-ABO_3/KTaO_3 system as the research object to study the relationship between the interface conductivity and the redox property of B-site metal in the amorphous film.The criterion of oxide-oxide interface redox reactions for the B-site metals,Zr,Al,Ti,Ta,and Nb in conductive interfaces was revealed:the formation heat of metal oxide,ⅢH_f~o,is lower than-350 kJ/(mol O) and the work function of the metal Φ is in the range of 3.75 eVΦ 4.4 eV.Furthermore,we found that the smaller absolute value of ⅢH_f~o and the larger value of Φ of the B-site metal would result in higher mobility of the two-dimensional electron gas that formed at the corresponding amorphous-ABO_3/KTaO_3 interface.This finding paves the way for the design of high-mobility all-oxide electronic devices.  相似文献   

16.
A single crystalline Mg2 Si film was formed by solid phase reaction(SPR) of a Si(111) substrate with an Mg overlayer capped with an oxide layer(s),which was enhanced by post annealing from room temperature to 100 ℃in a molecular beam epitaxy(MBE) system.The thermal stability of the Mg2 Si film was then systematically investigated by post annealing in an oxygen-radical ambient at 300℃,450℃ and 650 ℃,respectively.The Mg2 Si film stayed stable until the annealing temperature reached 450 ℃ then it transformed into amorphous MgO x attributed to the decomposition of Mg2 Si and the oxidization of dissociated Mg.  相似文献   

17.
Dong Yan 《中国物理 B》2022,31(3):37406-037406
The relationship between charge-density-wave (CDW) and superconductivity (SC), two vital physical phases in condensed matter physics, has always been the focus of scientists' research over the past decades. Motivated by this research hotspot, we systematically studied the physical properties of the layered telluride chalcogenide superconductors CuIr$_{2-x}$Al$_{x}$Te$_{4}$ ($0 \leqslant x \leqslant 0.2$). Through the resistance and magnetization measurements, we found that the CDW order was destroyed by a small amount of Al doping. Meanwhile, the superconducting transition temperature ($T_{\rm c}$) kept changing with the change of doping amount and rose towards the maximum value of 2.75 K when $x=0.075$. The value of normalized specific heat jump ($\Delta C/\gamma T_{\rm c}$) for the highest $T_{\rm c}$ sample CuIr$_{1.925}$Al$_{0.075}$Te$_{4}$ was 1.53, which was larger than the BCS value of 1.43 and showed the bulk superconducting nature. In order to clearly show the relationship between SC and CDW states, we propose a phase diagram of $T_{\rm c}$ vs. doping content.  相似文献   

18.
Density functional Theory (DFT) (B3p86) of Gaussian03 has been used to optimize the structure of Os2 molecule. The result shows that the ground state for Os2 molecule is 9-multiple state and its electronic configuration is ^9∑^+g, which shows spin polarization effect of Os2 molecule of transition metal elements for the first time. Meanwhile, we have not found any spin pollution because the wavefunction of the ground state does not mingle with wavefunctions with higher energy states. So, the fact that the ground state for Os2 molecule is a 9-multiple state is indicative of spin polarization effect of Os2 molecule of transition metal elements. That is, there exist 8 parallel spin electrons. The non-conjugated electron is greatest in number. These electrons occupy different spacious tracks, so that the energy of Os2 molecule is minimized. It can be concluded that the effect of parallel spin of Os2 molecule is larger than the effect of the conjugated molecule, which is obviously related to the effect of electron d delocalization. In addition, the Murrell-Sorbie potential functions with the parameters for the ground state ^9∑^+g and other states of Os2 molecule are derived. Dissociation energy De for the ground state of Os2 molecule is 3.3971eV, equilibrium bond length Re is 0.2403nm, vibration frequency ωe is 235.32cm^-1. Its force constants f2, f3, and f4 are 3.1032×10^2aJ·nm^-2, -14.3425×10^3aJ·nm^-3 and 50.5792×10^4aJ·nm^-4 respectively. The other spectroscopic data for the ground state of Os2 molecule ωexe, Be and ae are 0.4277cm^- 1, 0.0307cm^- 1 and 0.6491 × 10^-4cm^-1 respectively.  相似文献   

19.
Yan Zhang 《中国物理 B》2022,31(7):77501-077501
HoBi single crystal and polycrystalline compounds with NaCl-type structure are successfully obtained, and their magnetic and magnetocaloric properties are studied in detail. With temperature increasing, HoBi compound undergoes two magnetic transitions at 3.7 K and 6 K, respectively. The transition temperature at 6 K is recognized as an antiferromagnetic-to-paramagnetic (AFM-PM) transition, which belongs to the first-order magnetic phase transition (FOMT). It is interesting that the HoBi compound with FOMT exhibits good thermal and magnetic reversibility. Furthermore, a large inverse and normal magnetocaloric effect (MCE) is found in HoBi single crystal in the $H|| [100]$ direction, and the positive $\Delta S_{\rm M}$ peak reaches 13.1 J/kg$\cdot$K under a low field change of 2 T and the negative $\Delta S_{\rm M}$ peak arrives at $-18 $ J/kg$\cdot$K under a field change of 5 T. These excellent properties are expected to be applied to some magnetic refrigerators with special designs and functions.  相似文献   

20.
<正>Magnetic properties and magnetocaloric effects of La1-xRxFe1105 Si9105)(R=Pr,(0≤x≤0.5);R = Ce and Nd, (0≤x≤0.3)) compounds are investigated.Partially replacing La with R = Ce,Pr and Nd in La1-xRxFe11.5Si1.5 leads to a reduction in Curie temperature due to the lattice contraction.The substitution of R for La causes an enhancement in field-induced itinerant electron metamagnetic transition,which leads to a remarkable increase in magnetic entropy change△Sm and also in hysteresis loss.However,a high effective refrigerant capacity RCeff is still maintained in La1-xRxFe11.5Si1.5.In the present samples,a large△Sm and a high RCeff have been achieved simultaneously.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号