首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
张晓燕  杨传路  高峰  任廷琦 《中国物理》2006,15(9):1981-1986
The multi-reference configuration interaction method and aug-cc-pvqz (AVQZ) have been used to calculate potential energy curves (PECs) of the singlet and triplet states of the riu and rig symmetry of B2++. All of the four states (^l∏u, ^1∏g, ^3∏u and ^3∏g) are found to be metastable states, though the potential well of ^3∏u symmetry is very shallow. Based on the PECs, the analytical potential energy functions (APEFs) of these states have been fitted using the least square fitting method and two models of function. The spectroscopic parameters of each state are also calculated, and are compared with other investigations in the literature. The credibility and veracity of the two functions are evaluated. Some ideas to improve the fitting accuracy are presented. Also the vibrational levels for each state are predicted by solving the SchrSdinger equation of nuclear motion.  相似文献   

2.
吴玲  杨晓华  陈扬骎 《中国物理 B》2009,18(7):2724-2728
This paper studies the isotopic effect of Cl2+ rovibronic spectra in the A2Πu(Ω=1/2) X 2Πg(Ω= 1/2) system.Based on the experimental results of the molecular constants of 35 Cl2+,it calculates the vibrational isotope shifts of the(2,7) and(3,7) band between the isotopic species 35 Cl+2,35 Cl 37 Cl+and 37 Cl2+,and estimates the rotational constants of both A 2 Π u and X 2 Π g states for the minor isotopic species 35 Cl 37 Cl+and 37 Cl2+.The experimental results of the spectrum of 35 Cl 37 Cl+(3,7) band proves the above mentioned theoretical calculation.The molecular constants and thus resultant rovibronic spectrum for 37 Cl2+ were predicted,which will be helpful for further experimental investigation.  相似文献   

3.
The splitting of potential energy curves for the states $X^{2}\Pi _{3/2}$, $^{2}\Pi _{1/2}$ and $A^{2}\Sigma ^{ +}$ of hydroxyl OH under spin--orbit coupling (SOC) has been calculated by using the SO multi-configuration quasi-degenerate perturbation theory (SO-MCQDPT). Their Murrell--Sorbie (M--S) potential functions have been derived, then, the spectroscopic constants for $X^{2}\Pi _{3/2}$,$^{ 2}\Pi _{1/2}$ and $A^{2}\Sigma ^{ + }$ have been derived from the M--S function. The calculated dissociation energies for the three states are $D_{0}$[OH($X^{2}\Pi _{3/2})$]=34966.632cm$^{-1}$, $D_{0}$[OH($^{2}\Pi _{1/2})$]=34922.802cm$^{-1}$, and $D_{0}$[OH($A^{2}\Sigma ^{ + })$]=17469.794cm$^{-1}$, respectively. The vertical excitation energy $\nu [ {{ }^2\Pi _{1/2} ( {\nu = 0} ) \to {X}{ }^2\Pi _{3/2} ( {\nu = 0} )} ] = 139.6{\rm cm}^{-{\rm 1}}$. All the spectroscopic data for the $X^{2}\Pi _{3/2}$ and $^{2}\Pi _{1/2 }$ are given for the first time except the dissociation energy of $X^{2}\Pi _{3/2}$.  相似文献   

4.
白尔隽  舒启清 《中国物理》2005,14(1):208-211
The electron tunnelling phase time τP and dwell time τD through an associated delta potential barrier U(x) = ξδ(x) are calculated and both are in the order of 10^-17~10^-16s. The results show that the dependence of the phase time on the delta barrier parameter ξ can be described by the characteristic length lc = h^2/meξ and the characteristic energy Ec=meξ^2/h^2 of the delta barrier, where me is the electron mass, lc and Ec are assumed to be the effective width and height of the delta barrier with lcEc=ξ, respectively. It is found that TD reaches its maximum and τD = τp as the energy of the tunnelling electron is equal to Ec/2, i.e. as lc =λDB, λDB is de Broglie wave length of the electron.  相似文献   

5.
Benquan Lu 《中国物理 B》2022,31(4):43101-043101
In the weak-magnetic-field approximation, we derived an expression of quadratic Zeeman shift coefficient of $^3P^{\rm o}_0$ clock state for $^{88}$Sr and $^{87}$Sr atoms. By using this formula and the multi-configuration Dirac-Hartree-Fock theory, the quadratic Zeeman shift coefficients were calculated. The calculated values $C_2$ = $-23.38(5)$ MHz/T$^2$ for $^{88}$Sr and the $^3P^{\rm o}_0$, $F = 9/2$, $M_F = \pm9/2$ clock states for $^{87}$Sr agree well with the other available theoretical and experimental values, especially the most accurate measurement recently. In addition, the calculated values of the $^3P^{\rm o}_0$, $F = 9/2$, $M_F = \pm9/2$ clock states were also determined in our $^{87}$Sr optical lattice clock. The consistency with measurements verifies the validation of our calculation model. Our theory is also useful to evaluate the second-order Zeeman shift of the clock transition, for example, the new proposed $^1S_0$, $F = 9/2$, $M_F = \pm5/2$-${}^3P^{\rm o}_0$, $F = 9/2$, $M_F = \pm3/2$ transitions.  相似文献   

6.
The dependence between neutron skin thickness and neutron abrasion cross section (σnabr) for neutron-rich nuclei is investigated within the framework of the statistical abrasion ablation model. Assuming that the density distributions for proton and neutron are of Fermi-type, and adjusting the diffuseness parameter of neutron density distribution in the droplet model, we find out the good linear correlation between the neutron skin thickness and the abrasion cross section σnabr for neutron-rich nuclei. The uncertainty of neutron skin thickness determined from σnabr is very small. It is suggested that σnabr can be used as a new experimental observable to extract the neutron skin thickness for neutronrich nucleus. The scaling behaviours between neutron skin thickness and σnabr, separately, for isotopes of ^26-35Na, ^44-56Ar, ^48-60Ca, ^67-78Ni are also investigated.  相似文献   

7.
武瑞琪  郭迎春  王兵兵 《物理学报》2019,68(8):80201-080201
量化计算是理论研究分子的重要手段,对于具有高对称群的分子,采用子群计算是常用的方法.分子的电子态或分子轨道等的对称性在子群的表示中会出现重迭,从而不能从子群的结果直接给出电子态或分子轨道对称性的归属.本文以如何判断SF6基态1 A_(1g)的电子组态中最高占据轨道的对称性为例来解决这个问题.针对某些文献中的SF6基态1 A1g的电子组态中,最高占据轨道对称性是T_(1g)却写成T_(2g)的问题,采用Molpro量化计算软件,对SF6基态的平衡结构,进行了HF/6-311G*计算,得到了能量三重简并的最高占据轨道的函数表达式,进而运用O_h群的对称操作作用在三个轨道函数上,得到各操作的矩阵表示,于是得到特征标,最后确定了最高占据轨道为T_(1g)对称性.  相似文献   

8.
Density functional Theory (DFT) (B3p86) of Gaussian03 has been used to optimize the structure of Os2 molecule. The result shows that the ground state for Os2 molecule is 9-multiple state and its electronic configuration is ^9∑^+g, which shows spin polarization effect of Os2 molecule of transition metal elements for the first time. Meanwhile, we have not found any spin pollution because the wavefunction of the ground state does not mingle with wavefunctions with higher energy states. So, the fact that the ground state for Os2 molecule is a 9-multiple state is indicative of spin polarization effect of Os2 molecule of transition metal elements. That is, there exist 8 parallel spin electrons. The non-conjugated electron is greatest in number. These electrons occupy different spacious tracks, so that the energy of Os2 molecule is minimized. It can be concluded that the effect of parallel spin of Os2 molecule is larger than the effect of the conjugated molecule, which is obviously related to the effect of electron d delocalization. In addition, the Murrell-Sorbie potential functions with the parameters for the ground state ^9∑^+g and other states of Os2 molecule are derived. Dissociation energy De for the ground state of Os2 molecule is 3.3971eV, equilibrium bond length Re is 0.2403nm, vibration frequency ωe is 235.32cm^-1. Its force constants f2, f3, and f4 are 3.1032×10^2aJ·nm^-2, -14.3425×10^3aJ·nm^-3 and 50.5792×10^4aJ·nm^-4 respectively. The other spectroscopic data for the ground state of Os2 molecule ωexe, Be and ae are 0.4277cm^- 1, 0.0307cm^- 1 and 0.6491 × 10^-4cm^-1 respectively.  相似文献   

9.
Interaction potential of the SiD(X2Π) radical is constructed by using the CCSD(T) theory in combination with the largest correlation-consistent quintuple basis set augmented with the diffuse functions in the valence range. Using the interaction potential, the spectroscopic parameters are accurately determined. The present D0, De, Re, ωe, αe and Be values are of 3.0956 eV, 3.1863 eV, 0.15223 nm, 1472.894 cm-1, 0.07799 cm-1 and 3.8717 cm-1, respectively, which are in excellent agreement with the measurements. A total of 26 vibrational states is predicted when J=0 by solving the radial Schro¨dinger equation of nuclear motion. The complete vibrational levels, classical turning points, initial rotation and centrifugal distortion constants when J=0 are reported for the first time, which are in good accord with the available experiments. The total and various partial-wave cross sections are calculated for the elastic collisions between Si and D atoms in their ground states at 1.0×10-11–1.0×10-3 a.u. when the two atoms approach each other along the SiD(X2Π) potential energy curve. Four shape resonances are found in the total elastic cross sections, and their resonant energies are of 1.73×10-5, 4.0×10-5, 6.45×10-5 and 5.5×10-4 a.u., respectively. Each shape resonance in the total elastic cross sections is carefully investigated. The results show that the shape of the total elastic cross sections is mainly dominated by the s partial wave at very low temperatures. Because of the weakness of the shape resonances coming from the higher partial waves, most of them are passed into oblivion by the strong s partial-wave elastic cross sections.  相似文献   

10.
In the framework of a five-dimensional (5D) bounce cosmological model, a useful function f(z) is obtained by giving a concrete expression of deceleration parameter q(z)=q1+{q2}/{1+ln (1+ z)}. Then using the obtained Hubble parameter H(z) according to the function f(z), we constrain the accelerating universe from recent cosmic observations: the 192 ESSENCE SNe Ia and the 9 observational H(z) data. The best fitting values of transition redshift zT and current deceleration parameter q0 are given as zT= 0.65-0.120.25 and q0 = - 0.76-0.15+0.15 (1σ). Furthermore, in the 5D bounce model it can be seen that the evolution of equation of state (EOS) for dark energy wde can cross over -1 at about z=0.23 and the current value w0de= - 1.15<- 1. On the other hand, by giving a concrete expression of model-independent EOS of dark energy wde, in the 5D bounce model we obtain the best fitting values zT= 0.660.08+0.11 and q0 = - 0.690.10+0.10 (1σ) from the recently observed data: the 192 ESSENCE SNe Ia, the observational H(z) data, the 3-year Wilkinson Microwave Anisotropy Probe (WMAP), the Sloan Digital Sky Survey (SDSS) baryon acoustic peak and the x-ray gas mass fraction in clusters.  相似文献   

11.
The analytical transfer matrix method (ATMM) is applied to calculating the critical radius $r_{\rm c}$ and the dipole polarizability $\alpha_{\rm d}$ in two confined systems: the hydrogen atom and the Hulth\'{e}n potential. We find that there exists a linear relation between $r_{\rm c}^{1/2}$ and the quantum number $n_{r}$ for a fixed angular quantum number $l$, moreover, the three bounds of $\alpha_{\rm d}$ ($\alpha_{\rm d}^{K}$, $\alpha_{\rm d}^{B}$, $\alpha_{\rm d}^{U}$) satisfy an inequality: $\alpha_{\rm d}^{K}\leq\alpha_{\rm d}^{B}\leq\alpha_{\rm d}^{U}$. A comparison between the ATMM, the exact numerical analysis, and the variational wavefunctions shows that our method works very well in the systems.  相似文献   

12.
After examining Feynman diagrams corresponding to the ${\bar{D}}^{(* )}{{\rm{\Sigma }}}_{c}^{(* )}$, ${\bar{D}}^{(* )}{{\rm{\Lambda }}}_{c}$, ${D}^{(* )}{\bar{K}}^{* }$, and ${D}^{(* )}{\bar{D}}^{(* )}$ hadronic molecular states, we propose a possible binding mechanism induced by shared light quarks. This mechanism is similar to the covalent bond in chemical molecules induced by shared electrons. We use the method of QCD sum rules to calculate its corresponding light-quark-exchange diagrams, and the obtained results indicate a model-independent hypothesis: the light-quark-exchange interaction is attractive when the shared light quarks are totally antisymmetric so they obey the Pauli principle. We build a toy model with four parameters to formulize this picture and estimate binding energies of some possibly-existing covalent hadronic molecules. A unique feature of this picture is that the binding energies of the (I)JP = (0)1+ $D{\bar{B}}^{* }/{D}^{* }\bar{B}$ hadronic molecules are much larger than those of the (I)JP = (0)1+ ${{DD}}^{* }/\bar{B}{\bar{B}}^{* }$ ones, while the (I)JP = (1/2)1/2+ $\bar{D}{{\rm{\Sigma }}}_{c}/\bar{D}{{\rm{\Sigma }}}_{b}/B{{\rm{\Sigma }}}_{c}/B{{\rm{\Sigma }}}_{b}$ hadronic molecules have similar binding energies.  相似文献   

13.
The feature of conduction band (CB) of Tensile-Strained Si(TS-Si) on a relaxed Si1-xGex substrate is systematically investigated, including the number of equivalent CB edge energy extrema, CB energy minima, the position of the extremal point, and effective mass. Based on an analysis of symmetry under strain, the number of equivalent CB edge energy extrema is presented; Using the K.P method with the help of perturbation theory, dispersion relation near minima of CB bottom energy, derived from the linear deformation potential theory, is determined, from which the parameters, namely, the position of the extremal point, and the longitudinal and transverse masses (m1^* and mt^*)are obtained.  相似文献   

14.
Yun-Guang Zhang 《中国物理 B》2022,31(5):53101-053101
Potential energy curves of the X$^{1}\Sigma ^{+}$ and A$^{1}\Pi $ states of the AlF molecule are studied through the combination of the multi-reference configuration interaction (MRCI) approach and Davidson corrections (MRCI$+$Q). The AWCV5Z basis set is employed in the calculations. The transition dipole moments (TDMs) of the A$^{1}\Pi \leftrightarrow {\rm X}^{1}\Sigma^{+}$ transition are explored based on the AWCV5Z basis set and (4, 2, 2, 0) active space. The Schrödinger equation is solved via the LEVEL 8.2 program, and the vibrational levels and rotational constants of the X$^{1}\Sigma^{+}$ and A$^{1}\Pi $ states are calculated. It is shown that the AlF molecule has high diagonal Franck-Condon factors ($f_{00}=0.9949$ and $f_{11}=0.9854$) and large Einstein coefficients for the transition of A$^{1}\Pi {(\nu }'=0)\leftrightarrow {\rm X}^{1}\Sigma^{+}{\rm (\nu }'=0)$. In addition, the radiative lifetimes of the vibrational levels are close to 10$^{-9}$ s for the A$^{1}\Pi $ state. The line intensities of the A$^{1}\Pi {\rm (\nu }'=4-15)\leftrightarrow {\rm X}^{1}\Sigma^{+}{\rm (\nu }'=0)$ transitions are also calculated. The calculated TDMs and transition probabilities in this work are credible and provide some guidance for the study of similar transitions, particularly for exploring interstellar space.  相似文献   

15.
The Ni/4H-SiC Schottky barrier diodes (SBDs) and transfer length method (TLM) test patterns of Ni/4H-SiC Ohmic contacts were fabricated, and irradiated with 1~MeV electrons up to a dose of 3.43× 1014~e/cm-2. After radiation, the forward currents of the SBDs at 2~V decreased by about 50%, and the reverse currents at -200~V increased by less than 30%. Schottky barrier height (φ B ) of the Ni/4H-SiC SBD increased from 1.20~eV to 1.21~eV under 0~V irradiation bias, and decreased from 1.25~eV to 1.19~eV under -30~V irradiation bias. The degradation of φ B could be explained by the variation of interface states of Schottky contacts. The on-state resistance (Rs) and the reverse current increased with the dose, which can be ascribed to the radiation defects in bulk material. The specific contact resistance (\rhoc) of the Ni/SiC Ohmic contact increased from 5.11× 105~Ωega.cm2 to 2.97× 10-4~Ωega.cm2.  相似文献   

16.
张小妞  施德恒  孙金锋  朱遵略 《中国物理 B》2010,19(1):13501-013501
An interaction potential for an N2(X1σg+) molecule is constructed by using the highly accurate valence internally contracted multireference configuration interaction method and the largest basis set, aug-cc-pV6Z, in the valence range. The potential is used to investigate the elastic scattering of two N atoms at energies from 1.0× 10-11 to 1.0× 10-4 a.u. The derived total elastic cross sections are very large and almost constant at ultralow temperatures, and the shape of total elastic cross section curve is mainly dominated by the s-partial wave at very low collision energies. Three shape resonances are found in the total elastic cross sections. Concretely, the first one is very sharp and strong. It results from the g-partial-wave contribution and the resonant energy is 3.645× 10-6 a.u. The second one is contributed by the h-partial wave and the resonant energy is 1.752× 10-5 a.u. This resonance is broadened by those from the d- and f-partial waves. The third one comes from the l = 6 partial wave contribution and the resonant energy is 3.522× 10-5 a.u. This resonance is broadened by those from the g- and h-partial waves. The N2(X1σg+) molecular parameters, which are determined at the current theoretical level, achieve very high accuracy due to the employment of the largest correlation-consistent basis set in the valence range.  相似文献   

17.
Based on a high level ab initio calculation which is carried out with the multireference configuration interaction method under the aug-cc-pVXZ (AVXZ) basis sets, X=T, Q, 5, the accurate potential energy curves (PECs) of the ground state ${\rm{X}}{}^{{\rm{1}}}{\rm{\Sigma }}_{g}^{+}$ and the first excited state ${\rm{A}}{}^{{\rm{1}}}{\rm{\Sigma }}_{u}^{+}$ of Li2 are constructed. By fitting the ab initio potential energy points with the Murrell–Sorbie potential function, the analytic potential energy functions (APEFs) are obtained. The molecular bond length at the equilibrium (Re), the potential well depth (De), and the spectroscopic constants (Be, ωe, αe, and ωeχe) for the ${\rm{X}}{}^{{\rm{1}}}{\rm{\Sigma }}_{g}^{+}$ state and the ${\rm{A}}{}^{{\rm{1}}}{\rm{\Sigma }}_{u}^{+}$ state are deduced from the APEFs. The vibrational energy levels of the two electronic states are obtained by solving the time-independent Schrödinger equation with the Fourier grid Hamiltonian method. All the spectroscopic constants and the vibrational levels agree well with the experimental results. The Franck–Condon factors (FCFs) corresponding to the transitions from the vibrational level (v′=0) of the ground state to the vibrational levels (v=074) of the first excited state have been calculated. The FCF for the vibronic transition of ${\rm{A}}{}^{{\rm{1}}}{\rm{\Sigma }}_{u}^{+}$(v=0) ←${\rm{X}}{}^{{\rm{1}}}{\rm{\Sigma }}_{g}^{+}$(v′=0) is the strongest. These PECs and corresponding spectroscopic constants provide reliable theoretical references to both the spectroscopic and the molecular dynamic studies of the Li2 dimer.  相似文献   

18.
Yong Liu 《中国物理 B》2022,31(8):83101-083101
Calculations on the spectroscopic constants and transition properties of the first three states (${\rm a}^{1}\Delta $, ${\rm b}^{1}\Sigma^{+}$, and X$^{3}\Sigma^-$) of the SbH molecule were performed under the relativistic framework using the exact two-component Hamiltonian (X2C). The potential energy curves in the Franck-Condon region were computed and compared with the previous values. Furthermore, the transition dipole moments for the weak spin-forbidden transitions (${\rm b}0^{+}$-X$_{1}0^{+}$, ${\rm b}0^{+}$-X$_{2}$1, X$_{1}0^{+}$-X$_{2}$1, and X$_{2}$1-${\rm a}$2) were reported. The spontaneous radiative lifetime of the ${\rm b}^{1}\Sigma^{+}$ ($\upsilon '=0$) state was calculated as 163.5 $\pm$ 7.5 μs, which is in reasonable agreement with the latest experimental value of 173 $\pm$ 3 μs. The spontaneous radiative lifetimes of the X$_{2}$1 ($\upsilon '=0$) state and the ${\rm a}$2 ($\upsilon '=0$) state were calculated to be 48.6 s and $\sim 8 $ ms, respectively. Our study is expected to be a benchmark transition property computation for comparison with other theoretical and experimental results. The datasets presented in this paper, including the transition dipole moments, are openly available at https://dx.doi.org/10.11922/sciencedb.j00113.00018.  相似文献   

19.
We investigate the quantum numbers of the pentaquark states ${{\rm{P}}}_{{\rm{c}}}^{+}$, which are composed of 4 (three flavors) quarks and an antiquark, by analyzing their inherent nodal structure in this paper. Assuming that the four quarks form a tetrahedron or a square, and the antiquark is at the ground state, we determine the nodeless structure of the states with orbital angular moment L≤3, and in turn, the accessible low-lying states. Since the inherent nodal structure depends only on the inherent geometric symmetry, we propose the quantum numbers JP of the low-lying pentaquark states ${{\rm{P}}}_{c}^{+}$ may be ${\tfrac{3}{2}}^{-}$, ${\tfrac{5}{2}}^{-}$, ${\tfrac{3}{2}}^{+}$and ${\tfrac{5}{2}}^{+}$, independent of dynamical models.  相似文献   

20.
Role of the Λ(1600) is studied in the ${K}^{-}p\to {\rm{\Lambda }}{\pi }^{0}{\pi }^{0}$ reaction by using the effective Lagrangian approach near the threshold. We perform a calculation for the total and differential cross sections by considering the contributions from the Λ(1600) and Λ(1670) intermediate resonances decaying into ${\pi }^{0}{{\rm{\Sigma }}}^{* 0}(1385)$ with ${{\rm{\Sigma }}}^{* 0}(1385)$ decaying into ${\pi }^{0}{\rm{\Lambda }}$. Additionally, the non-resonance process from u-channel nucleon pole is also taken into account. With our model parameters, the current experimental data on the total cross sections of the ${K}^{-}p\to {\rm{\Lambda }}{\pi }^{0}{\pi }^{0}$ reaction can be well reproduced. It is shown that we really need the contribution from the Λ(1600) with spin-parity ${J}^{P}=1/{2}^{+}$, and that these measurements can be used to determine some of the properties of the Λ(1600) resonance. Furthermore, we also plot the π0Λ invariant mass distributions which could be tested by the future experimental measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号