首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
杨宇光  王叶红  温巧燕 《中国物理 B》2010,19(7):70304-070304
Two simple quantum broadcast communication schemes are proposed.A central party can broadcast his secret message to all the legitimate receivers simultaneously.Compared with the three schemes proposed recently (Wang et al.2007 Chin.Phys.16 1868),the proposed schemes have the advantages of consuming fewer quantum and classical resources,lessening the difficulty and intensity of necessary operations,and having higher efficiency.  相似文献   

2.
量子直接通信   总被引:1,自引:0,他引:1       下载免费PDF全文
李熙涵 《物理学报》2015,64(16):160307-160307
量子直接通信是量子通信中的一个重要分支, 它是一种不需要事先建立密钥而直接传输机密信息的新型通信模式. 本综述将介绍量子直接通信的基本原理, 回顾量子直接通信的发展历程, 从最早的高效量子直接通信协议、两步量子直接通信模型、量子一次一密直接通信模型等, 到抗噪声的量子直接通信模型以及基于单光子多自由度量子态及超纠缠态的量子直接通信模型, 最后介绍量子直接通信的研究现状并展望其发展未来.  相似文献   

3.
昌燕  许春香  张仕斌  闫丽丽 《中国物理 B》2014,23(1):10305-010305
A quantum broadcast communication and authentication protocol with a quantum one-time pad based on the Greenberger–Horne–Zeilinger state is proposed. A binary string is used to express the identity of the receiver, which is encoded as a single sequence of photons. The encoded photon sequence acts as a detection sequence and implements authentication. An XOR operation serves as a one-time pad and is used to ensure the security of the protocol. The binary string is reused even in a noisy channel and proves to be unconditionally secure. In contrast with the protocols proposed by Wang et al. [Chin. Phys. 16 1868(2007)] and Yang et al. [Chin. Phys. B 19 070304(2010)], the protocol in this study implements the identity authentication with a reusable binary string; no hash function or local unitary operation is used. The protocol in this study is also easier to implement and highly efficient without losing security.  相似文献   

4.
曹雅  高飞 《中国物理 B》2016,25(11):110305-110305
Chang et al.[Chin.Phys.623 010305(2014)]have proposed a quantum broadcast communication and authentication protocol.However,we find that an intercept-resend attack can be preformed successfully by a potential eavesdropper,who will be able to destroy the authentication function.Afterwards,he or she can acquire the secret transmitted message or even modify it while escaping detection,by implementing an efficient man-in-the-middle attack.Furthermore,we show a simple scheme to defend this attack,that is,applying non-reusable identity strings.  相似文献   

5.
We propose a quantum secure direct communication protocol with entanglement swapping and hyperentanglement.Any two users, Alice and Bob, can communicate with each other in a quantum network, even though there is no direct quantum channel between them. The trust center, Trent, who provides a quantum channel to link them by performing entanglement swapping, cannot eavesdrop on their communication. This protocol provides a high channel capacity because it uses hyperentanglement, which can be generated using a beta barium borate crystal.  相似文献   

6.
In this review article, we review the recent development of quantum secure direct communication (QSDC) and deterministic secure quantum communication (DSQC) which both are used to transmit secret message, including the criteria for QSDC, some interesting QSDC protocols, the DSQC protocols and QSDC network, etc. The difference between these two branches of quantum communication is that DSQC requires the two parties exchange at least one bit of classical information for reading out the message in each qubit, and QSDC does not. They are attractive because they are deterministic, in particular, the QSDC protocol is fully quantum mechanical. With sophisticated quantum technology in the future, the QSDC may become more and more popular. For ensuring the safety of QSDC with single photons and quantum information sharing of single qubit in a noisy channel, a quantum privacy amplification protocol has been proposed. It involves very simple CHC operations and reduces the information leakage to a negligible small level. Moreover, with the one-party quantum error correction, a relation has been established between classical linear codes and quantum one-party codes, hence it is convenient to transfer many good classical error correction codes to the quantum world. The one-party quantum error correction codes are especially designed for quantum dense coding and related QSDC protocols based on dense coding.   相似文献   

7.
Quantum secure direct communication via partially entangled states   总被引:1,自引:0,他引:1       下载免费PDF全文
满忠晓  夏云杰 《中国物理》2007,16(5):1197-1200
We present in this paper a quantum secure direct communication (QSDC) protocol by using partially entangled states. In the scheme a third party (Trent) is introduced to authenticate the participants. After authentication, Alice can directly, deterministically and successfully send a secret message to Bob. The security of the scheme is also discussed and confirmed.  相似文献   

8.
An efficient quantum secure direct communication protocol is presented over the amplitude damping channel. The protocol encodes logical bits in two-qubit noiseless states, and so it can function over a quantum channel subjected to collective amplitude damping. The feature of this protocol is that the sender encodes the secret directly on the quantum states, the receiver decodes the secret by performing determinate measurements, and there is no basis mismatch. The transmission’s safety is ensured by the nonorthogonality of the noiseless states traveling forward and backward on the quantum channel. Moreover, we construct the efficient quantum circuits to implement channel encoding and information encoding by means of primitive operations in quantum computation. Supported by the National Natural Science Foundation of China (Grant Nos. 60873191 and 60821001), the Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 200800131016), the Natural Science Foundation of Beijing (Grant No. 4072020), the National Laboratory for Modern Communications Science Foundation of China (Grant No. 9140C1101010601), and the ISN Open Foundation  相似文献   

9.
马鸿洋  秦国卿  范兴奎  初鹏程 《物理学报》2015,64(16):160306-160306
提出和研究了噪声情况下的量子网络直接通信. 通信过程中所有量子节点共享多粒子Greenberger-Horne-Zeilinger (GHZ)量子纠缠态; 发送节点将手中共享的GHZ态的粒子作为控制比特、传输秘密信息的粒子作为目标比特, 应用控制非门(CNOT)操作; 每个接收节点将手中共享GHZ 态的粒子作为控制比特、接收到的秘密信息粒子作为目标比特, 再次应用CNOT门操作从而获得含误码的秘密信息. 每个接收节点从秘密信息中提取部分作为检测比特串, 并将剩余的秘密信息应用奇偶校验矩阵纠正其中存在的比特翻转错误, 所有接收节点获得纠正后的秘密信息. 对协议安全、吞吐效率、通信效率等进行了分析和讨论.  相似文献   

10.
杨璐  马鸿洋  郑超  丁晓兰  高健存  龙桂鲁 《物理学报》2017,66(23):230303-230303
量子保密通信包括量子密钥分发、量子安全直接通信和量子秘密共享等主要形式.在量子密钥分发和秘密共享中,传输的是随机数而不是信息,要再经过一次经典通信才能完成信息的传输.在量子信道直接传输信息的量子通信形式是量子安全直接通信.基于量子隐形传态的量子通信(简称量子隐形传态通信)是否属于量子安全直接通信尚需解释.构造了一个量子隐形传态通信方案,给出了具体的操作步骤.与一般的量子隐形传态不同,量子隐形传态通信所传输的量子态是计算基矢态,大大简化了贝尔基测量和单粒子操作.分析结果表明,量子隐形传态通信等价于包含了全用型量子密钥分发和经典通信的复合过程,不是量子安全直接通信,其传输受到中间介质和距离的影响,所以不比量子密钥分发更有优势.将该方案与量子密钥分发、量子安全直接通信和经典一次性便笺密码方案进行对比,通过几个通信参数的比较给出各个方案的特点,还特别讨论了各方案在空间量子通信方面的特点.  相似文献   

11.
For the first time, a threshold quantum secure direct communication (TQSDC) scheme is presented. Similar to the classical Shamir's secret sharing scheme, the sender makes n shares, S1, …, Sn of secret key K and each receiver keeps a share secretly. If the sender wants to send a secret message M to the receivers, he en-codes the information of K and M on a single photon sequence and sends it to one of the receivers. According to the secret shares, the t receivers sequentially per-form the corresponding unitary operations on the single photon sequence and ob-tain the secret message M. The shared shares may be reusable if it can be judged that there is no eavesdropper in line. We discuss that our protocol is feasible with current technology.  相似文献   

12.
This paper presents a scheme for quantum secure direct communication with quantum encryption. The two authorized users use repeatedly a sequence of the pure entangled pairs (quantum key) shared for encrypting and decrypting the secret message carried by the travelling photons directly. For checking eavesdropping, the two parties perform the single-photon measurements on some decoy particles before each round. This scheme has the advantage that the pure entangled quantum signal source is feasible at present and any eavesdropper cannot steal the message.  相似文献   

13.
A protocol for quantum secure direct communication by using entangled qutrits and swapping quantum entanglement is proposed. In this protocol, a set of ordered two-qutrit entangled states is used as quantum information channels for sending secret messages directly. During the process of transmission of particles, the transmitted particles do not carry any secret messages and are transmitted only one time. The protocol has higher source capacity than protocols using usual two-dimensional Bell-basis states as quantum channel. The security is ensured by the unitary operations randomly performed on all checking groups before the particle sequence is transmitted and the application of entanglement swapping.  相似文献   

14.
宋杰  朱爱东  张寿 《中国物理》2007,16(3):621-623
This paper presents a modified secure direct communication protocol by using the blind polarization bases and particles' random transmitting order. In our protocol, a sender (Alice) encodes secret messages by rotating a random polarization angle of particle and then the receiver (Bob) sends back these particles as a random sequence. This ensures the security of communication.  相似文献   

15.
We present a scheme for quantum privacy amplification (QPA) for a sequence of single qubits. The QPA procedure uses a unitary operation with two controlled-not gates and a Hadamard gate. Every two qubits are performed with the unitary gate operation, and a measurement is made on one photon and the other one is retained.The retained qubit carries the state information of the discarded one. In this way, the information leakage is reduced.The procedure can be performed repeatedly so that the information leakage is reduced to any arbitrarily low level. With this QPA scheme, the quantum secure direct communication with single qubits can be implemented with arbitrarily high security. We also exploit this scheme to do privacy amplification on the single qubits in quantum information sharing for long-distance communication with quantum repeaters.  相似文献   

16.
We present a scheme for quantum privacy amplification (QPA) for a sequence of single qubits. The QPA procedure uses a unitary operation with two controlled-not gates and a Hadamard gate. Every two qubits are performed with the unitary gate operation, and a measurement is made on one photon and the other one is retained. The retained qubit carries the state information of the discarded one. In this way, the information leakage is reduced. The procedure can be performed repeatedly so that the information leakage is reduced to any arbitrarily low level. With this QPA scheme, the quantum secure direct communication with single qubits can be implemented with arbitrarily high security. We also exploit this scheme to do privacy amplification on the single qubits in quantum information sharing for long-distance communication with quantum repeaters.  相似文献   

17.
Recently Xia and Song [Phys. Lett. A 364 (2007) 117] have proposed a controlled quantum secure direct communication (CQSDC) protocol. They claimed that in their protocol only with the help of the controller Charlie, the receiver Alice can successfully extract the secret message from the sender Bob. In this letter, first we will show that within their protocol the controller Charlie's role could have been excluded if it were not for their unreasonable design. We then revise the Xia-Song CQSDC protocol such that its original advantages are reta/ned and the CQSDC can be really realized.  相似文献   

18.
量子安全直接通信研究进展   总被引:1,自引:0,他引:1  
简要地介绍了量子安全直接通信的必要条件,初步介绍了两个量子安全直接通信模型,即Two-Step和Quantum-One-Time-Pad模型。 The requirements of quantum secure direct communication (QSDC) are briefly introduced. Two QSDC schemes i. e. , the Two-Step QSDC scheme and the Quantum-One-Time-Pad QSDC scheme, are discussed in brief.  相似文献   

19.
杨静  王川  张茹 《中国物理 B》2010,19(11):110311-110311
An improved quantum secure direct communication (QSDC) protocol is proposed in this paper.Blocks of entangled photon pairs are transmitted in two steps in which secret messages are transmitted directly.The single logical qubits and unitary operations under decoherence free subspaces are presented and the generalized Bell states are constructed which are immune to the collective noise.Two steps of qubit transmission are used in this protocol to guarantee the security of communication.The security of the protocol against various attacks are discussed.  相似文献   

20.
A theoretical quantum communication scheme based on entanglement swapping and superdense coding is proposed with a 3-dimensional Bell state and 2-dimensional Bell state function as quantum channel, quantum key distribution and quantum secure direct communication can be simultaneously accomplished in the scheme. The scheme is secure and has high source capacity. At last, we generalize the quantum communication scheme to d-dimensional quantum channel  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号