首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CdFe2O4 thin films of different thicknesses were deposited onto glass substrates by the thermal evaporation technique. Their structural characteristics were studied by X-ray diffraction (XRD). The microstructure parameters, crystallite size, and microstrain were calculated. It is observed that both the crystallite size increases and microstrain increase with increasing with the film thickness. The fundamental optical parameters like absorption coefficient and optical band gap are calculated in the strong absorption region of transmittance and reflectance spectrum. The refractive indices have been evaluated in terms of the envelope method, which has been suggested by Swanepoel in the transparent region. The refractive index can be extrapolated by the Cauchy dispersion relationship over the whole spectra range, which extended from 400 to 2500 nm. The refractive index, n, increases on increasing the film thickness up to 733 nm and the variation of n with higher thickness lies within the experimental errors.  相似文献   

2.
We report results obtained from optical absorption studies carried out on amorphous silicon thin films deposited by plasma-enhanced chemical vapour deposition (PECVD) from silane plasma. The influence of the film thickness was studied on the two series of samples deposited from undiluted silane and under moderate hydrogen dilution of silane. Spectral refractive indices and absorption coefficients were determined from transmittance spectra. The spectral absorption coefficients were used to determine the Tauc optical band-gap energies Eg, the B factors of the Tauc plots, the iso-energy values E04 (energy at which the absorption coefficient is equal to 104 cm−1). The results were correlated with volume fractions of the amorphous phase and voids and with the film thickness.  相似文献   

3.
The structural, morphological and optical properties of CuAlS2 films deposited by spray pyrolysis method have been investigated. CuAlS2 in the form of films is prepared at different deposition conditions by a simple and economical spray pyrolysis method. The structural, surface morphology and optical properties of the films were analyzed by X-ray diffraction (XRD), scanning electron microscope (SEM), atomic force microscope (AFM) and absorbance spectra, respectively. The films were polycrystalline, crystallized in a tetragonal structure, and are preferentially orientated along the (1 1 2) direction. Grain size values, dislocation density, and d% error of CuAlS2 films were calculated. The optical band gap of the CuAlS2 film was found to be 3.45 eV. The optical constants such as refractive index, extinction coefficient and dielectric constants of the CuAlS2 film were determined. The refractive index dispersion curve of the film obeys the single oscillator model. Optical dispersion parameters Eo and Ed developed by Wemple-DiDomenico were calculated and found to be 3.562 and 12.590 eV.  相似文献   

4.
E.R. Shaaban 《哲学杂志》2013,93(5):781-794
The optical transmittance spectrum is influenced by inhomogeneities in germanium arsenoselenide thin films. The non-uniformity of thickness, found under the present deposition conditions, gives rise to a clear shrinking of the interference fringes of the transmittance spectrum at normal incidence. Inaccuracies and even serious errors occur if the refractive index and film thickness are calculated from such a shrunken transmittance spectrum, under the unrealistic assumption that the film is uniform. The analytical expressions proposed by Swanepoel [J. Phys. E. Sci. Instrum. 17 (1984) 896] enabled derivation of the refractive index and film thickness of a wedge-shaped thin film from its shrunk transmittance spectrum. This method was applied in this study making it possible to derive the refractive index and average thickness to an accuracy better than 1%. Dispersion of the refractive index is discussed in terms of the single-oscillator Wemple–DiDomenico model [Phys. Rev. B 3 (1971) 1338]. The absorption coefficient and, thus the extinction coefficient, can be calculated from transmittance and reflectance spectra in the strong absorption region. The optical energy gap is derived from Tauc's extrapolation [Amorphous and Liquid Semiconductor (Plenum Press, New York, 1974)]. The relationship between the optical gap and chemical composition in the Ge x As30– x Se70 (with 0 ≤ x ≤ 30) amorphous system is discussed in terms of the chemical bond approach and cohesive energy.  相似文献   

5.
CdSe thin films were deposited on glass substrates using Successive Ionic Layer Adsorption and Reaction (SILAR) method at room temperature and ambient pressure. The relationship between refractive index and energy bandgap was investigated. The film thickness effect on the structural, morphological, optical and electrical properties of CdSe thin films was investigated. The X-ray diffraction (XRD) and scanning electron microscopy (SEM) studies showed that all the films exhibit polycrystalline nature with hexagonal structure and are covered well with glass substrates. The crystalline and surface properties of the films improved with increasing film thickness. The optical absorption studies revealed that the films are found to be a direct allowed transition. The energy bandgap values were changed from 1.93 to 1.87 eV depending on the film thickness. The electron effective mass (me?/mo), refractive index (n), optical static and high frequency dielectric constant (εo, ε) values were calculated by using the energy bandgap values as a function of the film thickness. The resistivity of the films changed between 106 and 102 Ω-cm with increasing film thickness at room temperature.  相似文献   

6.
Zinc telluride thin films with different thicknesses have been deposited by electron beam gun evaporation system onto glass substrates at room temperature. X-ray and electron diffraction techniques have been employed to determine the crystal structure and the particle size of the deposited films. The stoichiometry of the deposited films was confirmed by means of energy-dispersive X-ray spectrometry. The optical transmission and reflection spectrum of the deposited films have been recorded in the wavelength optical range 450-2500 nm. The variation of the optical parameters, i.e. refractive index, n, extinction coefficient, k, with thickness of the deposited films has been investigated. The refractive index dispersion in the transmission and low absorption region is adequately described by the single-oscillator model, whereby the values of the oscillator strength, oscillator position, dispersion parameter as well as the high-frequency dielectric constant were calculated for different film thickness. Graphical representations of the surface and volume energy loss function were also presented.  相似文献   

7.
The effect of γ-radiation dose on the optical spectra and optical energy gap (Eopt.) of Se76Te15Sb9 thin films was studied. The dependence of the absorption coefficient (α) on the photon energy () was determined as a function of radiation dose. The films show indirect allowed interband transition that is influenced by the radiation dose. Both the optical energy gap and the absorption coefficient were found to be dose dependent. The indirect optical energy gap was found to decrease from 1.257 to 0.664 eV with increasing the radiation dose from 10 to 250 krad, respectively. The results can be discussed on the basis of γ-irradiation-induced defects in the film. The width of the tail of localized states in the band gap (Ee) was evaluated using the Urbach edge method. The refractive index (n) was determined from the analysis of the transmittance and reflectance data. Analysis of the refractive index yields the values of high frequency dielectric constant (ε) and the carrier concentration (N/m*). The dependence of refractive index on the radiation dose has also been discussed. Other optical parameters such as real and imaginary parts of the dielectric constant (ε1, ε2) and the extinction coefficient (k) have been evaluated. It was found that the spectral absorption coefficient is expected to a suitable control parameter of γ-irradiation-sensitive elements of dosimetric systems for high energy ionizing radiation (0.06-1.33 MeV).  相似文献   

8.
The influence of atomic hydrogen annealing on the optical parameters of a-Si:H films was studied using spectrophotometric measurements of the film transmittance and reflectance in the wavelength range 200-3000 nm. In this annealing, the deposition of a thin layer and treatment with atomic hydrogen were repeated alternately, where the thickness of the thin cyclic layer, dcyc, and the treatment time of each cycle, tca, were kept fixed for each sample. A series of different samples with average thickness of 0.5 μm and different dcyc and tca were prepared. It was found that the refractive index, n, and the optical energy gap, Eg, increase as the treatment time, tca, increases from 0 to 60 s, while at tca=120 s both n and Eg decrease. Also, both the refractive index and the optical energy gap decrease with increasing the relative diffusion length of hydrogen, √tca/dcyc from 0.39 to 0.77. The widening of Eg is due to the structural relaxation resulting from impingement of atomic hydrogen on the growing surface. Thus, a good-quality a-Si:H with Urbach parameter 65 mev and optical energy gap of 1.78 eV was successfully prepared.  相似文献   

9.
A new method based on the polarization interferometer structure has been applied to measure the optical admittance, the refractive index and thickness of a thin film. The structure is a vibration insensitive optical system. There is one Twyman-Green interferometer part to induce a phase difference and one Fizeau interferometer part to induce the interference in the system. The intensities coming from four different polarizers were measured at the same time to prevent mechanical vibration influence. Using the polarization interferometer, the optical admittance, the refractive index and thickness of a single layer of Ta2O5 thin film has been measured. The measurement results were compared with the results obtained by ellipsometer. The results meet reasonable values in both refractive index and thickness.  相似文献   

10.
Cr doped CdO thin films were deposited on glass substrates by reactive DC magnetron sputtering with varying film thickness from 250 to 400 nm. XRD studies reveal that the films exhibit cubic structure with preferred orientation along the (2 0 0) plane. The optical transmittance of the films decreases from 92 to 72%, whereas the optical energy band gap of the films decreased from 2.88 to 2.78 eV with increasing film thickness. The Wemple–DiDomenico single oscillator model has been used to evaluate the optical dispersion parameters such as dispersion energy (Ed), oscillator energy (Eo), static refractive index (no) and high frequency dielectric constant (ε). The nonlinear optical parameters such as optical susceptibility (χ(1)), third order nonlinear optical susceptibility (χ(3)) and nonlinear refractive index (n2) of the films were also determined.  相似文献   

11.
We present the methodological framework of the Swanepoel method for the spectrophotometric determination of optical properties in thin films using transmittance data. As an illustrative case study, we determined the refractive index, thickness, absorption index, and extinction coefficient of a nanostructured 3 mol% Y2O3-doped ZrO2 (yttria stabilized zirconia, 3YSZ) thin film prepared by the sol-gel method and deposited by dipping onto a soda-lime glass substrate. In addition, using the absorption index obtained with the Swanepoel method, we calculated the optical band gap of the film. The refractive index was found to increase, then decrease, and finally stabilize with increasing wavelength of the radiation, while the absorption index and extinction coefficient decreased monotonically to zero. These trends are explained in terms of the location of the absorption bands. We also deduced that this 3YSZ thin film has a direct optical band gap of 4.6 eV. All these results compared well with those given in the literature for similar thin films. This suggests that the Swanepoel method has an important role to play in the optical characterization of ceramic thin films.  相似文献   

12.
FTIR and variable angle spectroscopic ellipsometer in conjunction with computer simulation were employed to investigate the electron beam evaporated SiOxNy thin films. FTIR showed a large absorption band located between 600 and 1250 cm−1, which indicates that Si-O and Si-N bands are overlap in SiOxNy films. A three layers model was used to fit the calculated data to the experimental ellipsometric spectra. The main layer was described by Cauchy model while the interface layer and the surface layer were described using Tauc-Lorenz oscillator and Bruggeman effective medium approximation, respectively. The thickness, the refractive index and the extinction coefficient were accurately determined. The refractive index at 630 nm was found to increase from 1.74 to 1.85 with increasing the film thickness from 191.6 to 502.2 nm. The absorption coefficient was calculated from the obtained extinction coefficient values and it has been used to calculate the Tauc and Urbach energies.  相似文献   

13.
The influence of the thickness of the a-Si : H film on its optical properties was studied using spectrophotometric measurements of the film transmittance and reflectance in the wavelength range 200–3000 nm. Both the refractive index and the absorption coefficient were found to increase as the film thickness increased and the absorption edge shifted to lower energies. Both the optical energy gap, Eg, and Urbach parameter values, E0, decreased with increasing thickness. This decrease in Eg and E0 was slow for thicknesses above 400 nm.  相似文献   

14.
Thin films of manganese (III) chloride 5,10,15,20-tetraphenyl-21H,23H-porphine (MnTPPCl) with different film thickness were deposited by an evaporation technique. Some optical constants were calculated for these films at a thickness of 110, 220 and 330 nm and annealing temperature of 373 and 437 K. IR spectrum demonstrating that the thermal evaporation method is a good one to acquire undissociated and stoichiometric MnTPPCl films. Our perceptions demonstrate that the mechanism of the optical absorption obeys with the indirect transition. It was found that the energy gap, Eg, affected by the film thickness and annealing. Dispersion of the refractive index is described using single oscillator model. Dispersion parameters are calculated as a function of the film thickness and annealing temperature. In addition, the third-order nonlinear susceptibility, χ(3), and the nonlinear refractive index, n2, were calculated.  相似文献   

15.
16.
Bismuth titanate, Bi4Ti3O12 (BTO), is a typical ferroelectric material with useful properties for optical memory, piezoelectric and electro-optic devices. Its nano-crystals were compounded by the chemical solution decomposition technique. Its structure and size were analyzed by X-ray diffraction and transmissive electron microscopy. The composite thin film of BTO nano-crystals and high transparency polymethylmethacrylate (PMMA) polymer was prepared by spin coating. The transmitted spectrum of BTO/PMMA composite thin film in 300–1500 nm was measured. The film thickness d and the optical constants of the film, such as the refractive index n, the absorption coefficient α, and the extinction coefficient κ were obtained using the data from the transmitted spectrum.  相似文献   

17.
In this study, Titanium (IV) Oxide (TiO2) film has been prepared and characterized by X-ray diffraction (XRD). The XRD pattern of TiO2 film of anatase phase exhibit very sharp peaks at 25° and 47.85°. According to Scherrer??s formula the grain size of anatase (101) phase TiO2 nananoparticle is 38.5 nm. The optical properties and constants of TiO2 film of thickness (4 ??m) have been investigated at room temperature. The transmittance, reflectance and absorbance spectra are measured in the wavelength range (340?C900 nm). Optical constants of TiO2 film are derived from the transmission spectra and the refractive index dispersion of the film. The oscillator energy, E 0 dispersion energy, E d , the static refractive index, n 0, and other parameters have been determined by the single oscillator Wemple-DiDomenico method. This film can be used in the form of thin film in dye-sensitized solar cells.  相似文献   

18.
ZnO thin films are prepared on glass substrates by pulsed filtered cathodic vacuum arc deposition (PFCVAD) at room temperature. Optical parameters such as optical transmittance, reflectance, band tail, dielectric coefficient, refractive index, energy band gap have been studied, discussed and correlated to the changes with film thickness. Kramers-Kronig and dispersion relations were employed to determine the complex refractive index and dielectric constants using reflection data in the ultraviolet-visible-near infrared regions. Films with optical transmittance above 90% in the visible range were prepared at pressure of 6.5 × 10−4 Torr. XRD analysis revealed that all films had a strong ZnO (0 0 2) peak, indicating c-axis orientation. The crystal grain size increased from 14.97 nm to 22.53 nm as the film thickness increased from 139 nm to 427 nm, however no significant change was observed in interplanar distance and crystal lattice constant. Optical energy gap decreased from 3.21 eV to 3.19 eV with increasing the thickness. The transmission in UV region decreased with the increase of film thickness. The refractive index, Urbach tail and real part of complex dielectric constant decreased as the film thickness increased. Oscillator energy of as-deposited films increased from 3.49 eV to 4.78 eV as the thickness increased.  相似文献   

19.
The optical properties of polycrystalline lead iodide thin film grown on Corning glass substrate have been investigated by spectroscopic ellipsometry. A structural model is proposed to account for the optical constants of the film and its thickness. The optical properties of the PbI2 layer were modeled using a modified Cauchy dispersion formula. The optical band gap Eg has been calculated based on the absorption coefficient (α) data above the band edge and from the incident photon energy at the maximum index of refraction. The band gap was also measured directly from the plot of the first derivative of the experimental transmission data with respect to the light wavelength around the transition band edge. The band gap was found to be in the range of 2.385±0.010 eV which agrees with the reported experimental values. Urbach's energy tail was observed in the absorption trend below the band edge and was found to be related to Urbach's energy of 0.08 eV.  相似文献   

20.
Different compositions of GexAs10Te90−x (x=5, 10, 15, 20, and 25 at%) chalcogenide glasses were prepared by the usual melt quench technique. Amorphous GexAs10Te90−x thin films were deposited onto cleaned glass substrates using the thermal evaporation method. Transmission spectra, T(λ), of the films at normal incidence were measured in the wavelength range 400-2500 nm. A straightforward analysis proposed by Swanepoel based on the use of the maxima and minima of the interference fringes has been used to drive the film thickness, d, the complex index of refraction, n, and the extinction coefficient, k. It was found that, the addition of Ge content at the expense of Te atoms shifts the optical band gap to the short wavelength side (blue shift of the optical band gap) while the refractive index are found to decreases. The obtained results of the refractive index were discussed in terms of the electronic polarizability and the single-oscillator Wemple and DiDomenico model (WDD). The optical absorption is due to the allowed non-direct optical transitions. The observed increase in the optical band gap with the increase in Ge content was discussed in terms of the width of the tail states in the gap and the covalent bond approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号