共查询到20条相似文献,搜索用时 862 毫秒
1.
A phase-stepping method for interferometric photoelasticity is proposed to determinate whole-field plane stress components. Isopachic phase can be obtained by rotating polarizer, second quarter-wave plate and analyzer at definite optical arrangements. On the other hand, isochromatic and isoclinic phases can be determined in a circular polariscope arrangement. Furthermore, a load-stepping method is adopted to overcome the wrong mathematic sign of the isochromatics in the ambiguity regions and the influence of initial interferometric fringes on the isopachics. Light intensities and phase-stepping formula for the proposed method are derived using Jones calculus. Simulation of a circular disk under diametral compression demonstrates the feasibility of the proposed method. 相似文献
2.
In photoelasticity, the method of obtaining the individual values of principal stresses/normal stresses separately is referred to as stress separation. Shear difference is one of the widely used techniques for stress separation in photoelasticity and one needs the value of fringe order and the isoclinic angle free of noise at every pixel over the domain. For accurate parameter determination, a ten-step phase shifting approach which uses a plane polariscope for isoclinic determination and a circular polariscope for isochromatic determination is proposed. A new quality guided approach for isoclinic unwrapping is developed. Isochromatic phasemap free of ambiguous zones is obtained by a new methodology and is unwrapped by a quality-guided approach. Whole field evaluation of stress components and its representation is then presented. The models used in this study are intentionally subjected to moderate loads showing a high level of isochromatic–isoclinic interaction. In view of this, the isoclinic data has several kinks which is found to cause streak formation in the whole field representation of separated stress components. An outlier smoothing algorithm is proposed for getting a smooth variation of the digital photoelastic parameters over the domain. Use of such smoothed data for stress separation has removed the streaks and has also greatly improved the accuracy of the separated stress components. 相似文献
3.
The three-wavelength approach to phase-stepping photoelasticity as developed by the author is extended to determine automatically full-field stress tensor values. The only need for the user to calibrate the results is to give the material fringe value and the value of a stress at a single point. Four phase-stepped images illuminated by three wavelengths of light, that differ by prescribed increments, are collected using a semi-circular polariscope and an RGB CCD camera. A ramped phase map for the isochromatic parameter (α) is produced in the wrapped range −π/2<απ/2 that can be calibrated automatically. The value of the isoclinic angle (θ) is determined in the wrapped range −π/4<θπ/4. A discrete cosine transform algorithm has been developed to separate the stresses into Cartesian components. A convenience of the method is that accurate results can be obtained using a least-squares error minimisation process. The results obtained from experimental testing of a disc-in-compression specimen using transmission photoelasticity presented in comparison with theoretical solutions demonstrate the accuracy of the new approach. 相似文献
4.
In this work, digital photoelasticity technique is used to estimate the crack tip fracture parameters for different crack configurations. Conventionally, only isochromatic data surrounding the crack tip is used for SIF estimation, but with the advent of digital photoelasticity, pixel-wise availability of both isoclinic and isochromatic data could be exploited for SIF estimation in a novel way. A linear least square approach is proposed to estimate the mixed-mode crack tip fracture parameters by solving the multi-parameter stress field equation. The stress intensity factor (SIF) is extracted from those estimated fracture parameters. The isochromatic and isoclinic data around the crack tip is estimated using the ten‐step phase shifting technique. To get the unwrapped data, the adaptive quality guided phase unwrapping algorithm (AQGPU) has been used. The mixed mode fracture parameters, especially SIF are estimated for specimen configurations like single edge notch (SEN), center crack and straight crack ahead of inclusion using the proposed algorithm. The experimental SIF values estimated using the proposed method are compared with analytical/finite element analysis (FEA) results, and are found to be in good agreement. 相似文献
5.
A numerical-experimental hybrid method for the stress separation in the digital gradient sensing (DGS) method is proposed in this study. In the proposed hybrid method, boundary conditions for a local finite element model, that is, nodal force along boundaries are inversely determined from experimental values obtained by the digital gradient sensing method. The hybrid method follows two stages. In stage 1, the DGS method measures the Cartesian stress gradient components directly and, subsequently, the sum in Cartesian stresses at all interesting points on the surface; stress sum are used to compute the unknown boundary conditions for the local model. In stage 2, the individual stress components are calculated by the direct finite element method using the computed boundary conditions from stage 1. The effectiveness is demonstrated by applying the proposed method to a stress concentration problem involving concentrated load acting on an edge of a large planar sheet. The individual stress components thus determined are summed and compared with analytical stress sum, confirming the effectiveness and accuracy of the proposed technique. 相似文献
6.
The carrier fringes method has been proposed in digital photoelasticity in combination with techniques such as Fourier transform and phase shifting method, without considering the influence of the isoclinics on the isochromatic patterns analysis. Unlike other optical methods as moiré and holographic interferometry, in photoelasticity the light intensity emerging from a circular polariscope is related to both the isochromatic retardation and the isoclinic parameter. As it is shown by the theoretical analysis, owing to the misalignment between the principal stresses in the model and in the carrier, the computed retardation is affected by an error which is the same for all photoelastic methods based on the use of carrier fringes. Consequently, the photoelastic analysis carried out by methods that use carrier fringes cannot be applied as a full-field technique. In detail, numerical simulations show that the retardation error is comparable (less than 0.05 fringe orders) with that of other photoelastic methods provided that the misalignment between the principal stresses in the model and in the carrier is less than 30°. On the contrary, in the model zones where the misalignment is higher than 30°, the retardation measurement can be affected by non negligible errors (up to 0.25 fringe orders). 相似文献
7.
Towards effective phase unwrapping in digital photoelasticity 总被引:6,自引:1,他引:5
Phase-shifting techniques in photoelasticity have a peculiar problem of isoclinic–isochromatic interaction, which lead to ambiguous zones in phase map. A comprehensive discussion on the reason for the formation of ambiguous zones is presented in this paper. A new method is developed to remove this ambiguity in the phase map. The new methodology is validated with theoretically and experimentally generated phase maps. A flexible algorithm for phase unwrapping is developed using tiling. The applicability of this is demonstrated using various benchmark problems consisting of simply and multiply connected bodies and slices cut from stress frozen models. 相似文献
8.
9.
Real-time blind deconvolution of retinal images in adaptive optics scanning laser ophthalmoscopy 总被引:1,自引:0,他引:1
With the use of adaptive optics (AO), the ocular aberrations can be compensated to get high-resolution image of living human retina. However, the wavefront correction is not perfect due to the wavefront measure error and hardware restrictions. Thus, it is necessary to use a deconvolution algorithm to recover the retinal images. In this paper, a blind deconvolution technique called Incremental Wiener filter is used to restore the adaptive optics confocal scanning laser ophthalmoscope (AOSLO) images. The point-spread function (PSF) measured by wavefront sensor is only used as an initial value of our algorithm. We also realize the Incremental Wiener filter on graphics processing unit (GPU) in real-time. When the image size is 512 × 480 pixels, six iterations of our algorithm only spend about 10 ms. Retinal blood vessels as well as cells in retinal images are restored by our algorithm, and the PSFs are also revised. Retinal images with and without adaptive optics are both restored. The results show that Incremental Wiener filter reduces the noises and improve the image quality. 相似文献
10.
In the present work, an experimental study is carried out to estimate the mixed-mode stress intensity factors (SIF) for different cracked specimen configurations using digital image correlation (DIC) technique. For the estimation of mixed-mode SIF׳s using DIC, a new algorithm is proposed for the extraction of crack tip location and coefficients in the multi-parameter displacement field equations. From those estimated coefficients, SIF could be extracted. The required displacement data surrounding the crack tip has been obtained using 2D-DIC technique. An open source 2D DIC software Ncorr is used for the displacement field extraction. The presented methodology has been used to extract mixed-mode SIF׳s for specimen configurations like single edge notch (SEN) specimen and centre slant crack (CSC) specimens made out of Al 2014-T6 alloy. The experimental results have been compared with the analytical values and they are found to be in good agreement, thereby confirming the accuracy of the algorithm being proposed. 相似文献
11.
12.
13.
Xin Kang 《中国光学快报(英文版)》2008,6(2)
An effective method for reducing the speckle noise in digital holography is proposed in this paper.Different from the methods based on classical filtering technique,it utilizes the multiple holograms which are generated by rotating the illuminating light continuously.The intensity images reconstructed by a series of holograms generated by rotating the illuminating light possess different speckle patterns.Hence by properly averaging the reconstructed intensity fields,the speckle noises can be reduced greatly.Experimental results show that the proposed method is simple and effective to reduce speckle noise in digital holography. 相似文献
14.
It has been demonstrated that the Filtered-x Wilcoxon LMS (FxWLMS) based adaptive filter mitigates the effect of the outliers acquired by the microphone signal of hearing aids by minimizing the Wilcoxon norm and hence shows better cancellation performance than the existing Filtered-x LMS (FxLMS) algorithm. The prediction error method based adaptive feedback canceller (PEMAFC) reduces the bias present in the estimate of the feedback path due to the continuous adaptive filtering (CAF). However, the impulse response of the measured feedback path is close to zero for the first many samples due to the delay introduced by ADC converters and then contains few significant values, which results in slow convergence rate when an adaptive filter is used to model the same. To overcome this limitation, we propose a proportionate normalized WLMS (PNWLMS) algorithm based PEMAFC (P-PNWLMS) for feedback cancellation in hearing aid in the presence of outliers. Further, with an objective to improve the convergence rate and performance accuracy simultaneously, this paper proposes a novel convex PNWLMS (CPNWLMS) algorithm which incorporates convex combination of PNWLMS and WLMS algorithms. The weight update equations are derived for PEMAFC trained by PNWLMS (P-PNWLMS) and CPNWLMS (P-CPNWLMS) algorithms respectively. The results of the simulation study show improved performance of the proposed CPNWLMS based adaptive filter over its component filters. 相似文献
15.
16.
This paper presents an exploration for separation of oil-in-water and coalescence of oil droplets in ultrasound field via lattice Boltzmann method. Simulations were conducted by the ultrasound traveling and standing waves to enhance oil separation and trap oil droplets. The focus was to the effect of ultrasound irradiation on oil-in-water emulsion properties in the standing wave field, such as oil drop radius, morphology and growth kinetics of phase separation. Ultrasound fields were applied to irradiate the oil-in-water emulsion for getting flocculation of the oil droplets in 420 kHz case, and larger dispersed oil droplets and continuous phases in 2 MHz and 10 MHz cases, respectively. The separated phases started to rise along the direction of sound propagation after several periods. The rising rate of the flocks was significantly greater in ultrasound case than that of oil droplets in the original emulsion, indicating that ultrasound irradiation caused a rapid increase of oil droplet quantity in the progress of the separation. The separation degree was also significantly improved with increasing frequency or irradiation time. The dataset was rearranged for growth kinetics of ultrasonic phase separation in a plot by spherically averaged structure factor and the ratio of oil and emulsion phases. The analyses recovered the two different temporal regimes: the spinodal decomposition and domain growth stages, which further quantified the morphology results. These numerical results provide guidance for setting the optimum condition for the separation of oil-in-water emulsion in the ultrasound field. 相似文献
17.
18.
19.
Two original methods are proposed here for digital in-line hologram processing. Firstly, we propose an entropy-based method to retrieve the focus plane which is very useful for digital hologram reconstruction. Secondly, we introduce a new approach to remove the so-called twin images reconstructed by holograms. This is achieved owing to the Blind Source Separation (BSS) technique. The proposed method is made up of two steps: an Adaptive Quincunx Lifting Scheme (AQLS) and a statistical unmixing algorithm. The AQLS tool is based on wavelet packet transform, whose role is to maximize the sparseness of the input holograms. The unmixing algorithm uses the Independent Component Analysis (ICA) tool. Experimental results confirm the ability of convolutive blind source separation to discard the unwanted twin image from in-line digital holograms. 相似文献
20.
《Ultrasonics sonochemistry》2014,21(4):1289-1298
The separation of milk fat from natural whole milk has been achieved by applying ultrasonic standing waves (1 MHz and/or 2 MHz) in a litre-scale (5 L capacity) batch system. Various design parameters were tested such as power input level, process time, specific energy, transducer–reflector distance and the use of single and dual transducer set-ups. It was found that the efficacy of the treatment depended on the specific energy density input into the system. In this case, a plateau in fat concentration of ∼20% w/v was achieved in the creamed top layer after applying a minimum specific energy of 200 kJ/kg. In addition, the fat separation was enhanced by reducing the transducer reflector distance in the vessel, operating two transducers in a parallel set-up, or by increasing the duration of insonation, resulting in skimmed milk with a fat concentration as low as 1.7% (w/v) using raw milk after 20 min insonation. Dual mode operation with both transducers in parallel as close as 30 mm apart resulted in the fastest creaming and skimming in this study at ∼1.6 g fat/min. 相似文献