首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Herein, we report the discovery of the first potent and selective inhibitor of TRPV6, a calcium channel overexpressed in breast and prostate cancer, and its use to test the effect of blocking TRPV6‐mediated Ca2+‐influx on cell growth. The inhibitor was discovered through a computational method, xLOS, a 3D‐shape and pharmacophore similarity algorithm, a type of ligand‐based virtual screening (LBVS) method described briefly here. Starting with a single weakly active seed molecule, two successive rounds of LBVS followed by optimization by chemical synthesis led to a selective molecule with 0.3 μM inhibition of TRPV6. The ability of xLOS to identify different scaffolds early in LBVS was essential to success. The xLOS method may be generally useful to develop tool compounds for poorly characterized targets.  相似文献   

2.
An affinity two‐dimensional chromatography method was developed for the recognition, separation, and identification of allergic components from tubeimu saponin extracts, a preparation often injected to treat various conditions as indicated by traditional Chinese medicine. Rat basophilic leukemia‐2H3 cell membranes were used as the stationary phase of a membrane affinity chromatography column to capture components with affinity for mast cells that could be involved in a degranulation reaction. The retained components were enriched and analyzed by membrane affinity chromatography with liquid chromatography and mass spectrometry via a port switch valve. Suitability and reliability of the method was investigated using appropriate standards, and then, the method was applied to identify components retained from tubeimu saponin extracts. Tubeimoside A was identified in this way as a potential allergen, and degranulation assays confirmed that tubeimoside A induces RBL‐2H3 cell degranulation in a dose‐dependent manner. An increase in Ca2+ influx indicated that degranulation induced by tubeimoside A is likely Ca2+ dependent. Coupled with the degranulation assay, RBL‐2H3 cell‐based affinity chromatography coupled with liquid chromatography and mass spectrometry is an effective method for screening and identifying allergic components from tubeimu saponin extracts.  相似文献   

3.
Voltage‐gated Ca2+ (CaV) channels mediate Ca2+ entry into excitable cells to regulate a myriad of cellular events following membrane depolarization. We report the engineering of RGK GTPases, a class of genetically encoded CaV channel modulators, to enable photo‐tunable modulation of CaV channel activity in excitable mammalian cells. This optogenetic tool (designated optoRGK) tailored for CaV channels could find broad applications in interrogating a wide range of CaV‐mediated physiological processes.  相似文献   

4.
Ca2+ handling by mitochondria is crucial for cell life and the direct measure of mitochondrial Ca2+ concentration in living cells is of pivotal interest. Genetically‐encoded indicators greatly facilitated this task, however they require demanding delivery procedures. On the other hand, existing mitochondria‐targeted synthetic Ca2+ indicators are plagued by several drawbacks, for example, non‐specific localization, leakage, toxicity. Here we report the synthesis and characterization of a new fluorescent Ca2+ sensor, named mt‐fura‐2, obtained by coupling two triphenylphosphonium cations to the molecular backbone of the ratiometric Ca2+ indicator fura‐2. Mt‐fura‐2 binds Ca2+ with a dissociation constant of ≈1.5 μm in vitro. When loaded in different cell types as acetoxymethyl ester, the probe shows proper mitochondrial localization and accurately measures matrix [Ca2+] variations, proving its superiority over available dyes. We describe the synthesis, characterization and application of mt‐fura‐2 to cell types where the delivery of genetically‐encoded indicators is troublesome.  相似文献   

5.
At low millimolar Ca2+ concentrations, large unilamellar dioleoylphosphatidylcholine vesicles containing dimyristoylphosphatidate (20 mol%) release enclosed solutes like sulphate, but influx of Ca2+ is not demonstrable. Coincident with the permeability change, vesicle aggregation and membrane fusion are observed. These results contrast with those for dioleoylphosphatidate-containing vesicles under the same conditions, which show Ca2+ influx and Ca2+ chelator efflux, but no sulphate efflux, vesicle aggregation or membrane fusion. The observed differences in permeability behaviour of membranes containing these two phosphatidate molecular species are discussed with respect to the differences in their phase behaviour.  相似文献   

6.
Cyclic adenosine 5′‐diphosphate ribose (cADPR) is a second messenger in the Ca2+ signaling pathway. To elucidate its molecular mechanism in calcium release, a series of cADPR analogues with modification on ribose, nucleobase, and pyrophosphate have been investigated. Among them, the analogue with the modification of the northern ribose by ether linkage substitution (cIDPRE) exhibits membrane‐permeate Ca2+ agonistic activity in intact HeLa cells, human T cells, mouse cardiac myocytes and neurosecretory PC12 cell lines; thus, cIDPRE and coumarin‐caged cIDPRE are valuable probes to investigate the cADPR‐mediated Ca2+ signal pathway.  相似文献   

7.
Using the whole cell patch-clamp technique,we studied the effects of La3+ on calcium-activated K+ currents and its kinetics of activation and inactivation in non-excitable MC3T3 cells.Our results showed that the calcium-activated outward K+ currents were promoted with increasing concentration of Ca2+ in the pipette solution and a voltage- and Ca2+-dependent manner.La3+ in the bath solution inhibited the currents in a concentration-dependent manner and the inhibition EC50 was 8.23 ± 1.45 μmol/L.At the concentration of 50 μmol/L,La3+ significantly changed the Vh of the activation curve and shifted the activation curve to more positive potentials,but shifted the inactivation curve to more negative potentials.It had no effect on the slope factor k of the activation and inactivation curves.Potassium currents inhibition could induce a series of physiological and molecular biological functions,presumably because of its ability to depolarize the plasma membrane and enhance cell excitability,resulting in increasing Ca2+ influx and cytoplast Ca2+ concentration.This process may be one of the molecular mechanisms by which La3+ affects the cell growth and function of MC3T3 cells.  相似文献   

8.
Intercellular Ca2+ waves are propagation of Ca2+ transients among cells that could be initiated by chemical stimulation. Current methods for analyzing intercellular Ca2+ waves are difficult to realize localized chemical stimulations upon the target cell without interfering with adjacent contacting cells. In this paper, a simple and flexible microfluidic method was developed for investigating the intercellular communication of Ca2+ signals. A cross-patterned microfluidic chip was designed and fabricated with polydimethylsiloxane as the structural material. Localized chemical stimulation was achieved by a new strategy based on hydrodynamic gating technique. Clusters of target cells were seeded at the location within 300 μm downstream of the intersection of the cross-shaped microchannel. Confined lateral molecular diffusion largely minimized the interference from diffusion-induced stimulation of adjacent cells. Localized stimulation of the target cell with adenosine 5′-triphosphate successfully induced the propagation of intercellular Ca2+ waves among a population of adjacent contacting cells. Further inhibition studies verified that the propagation of calcium signals among NIH-3 T3 cells was dependent on direct cytosolic transfer via gap junctions. The developed microfluidic method provides a versatile platform for investigating the dynamics of intercellular communications.
Fig
Analysis of intercellular communication by flexible hydrodynamic gating  相似文献   

9.
Chuanxinlian injection is a traditional Chinese medicine injection widely used in China to treat sore throat, cough and dysentery, although a high occurrence of severe adverse reactions has been reported in clinical practice in recent years. In the present study, a human mast cell line‐1 cell membrane chromatography coupled with HPLC‐ESI‐MS/MS method was established to screen and identify potentical anaphylactic components in chuanxinlian injection, and the dehydroandrographolide was identified as a potential anaphylactic component. In vitro anaphylactic assay showed that intracellular Ca2+ concentration clearly increased under dehydroandrographolide (100 μm ) treatment. β ‐Hexosaminidase and histamine release in human mast cell line‐1 cells were both markedly enhanced with increased concentrations of dehydroandrographolide, confirming the anaphylactic activity of dehydroandrographolide. The application for chuanxinlian injection in this study suggested that the developed human mast cell line‐1 cell membrane chromatography coupled with HPLC‐ESI‐MS/MS system may be effective and rapid for screening the potentical anaphylactic components from complex samples.  相似文献   

10.
To quantify and characterize the potentially toxic protein aggregates associated with neurodegenerative diseases, a high‐throughput assay based on measuring the extent of aggregate‐induced Ca2+ entry into individual lipid vesicles has been developed. This approach was implemented by tethering vesicles containing a Ca2+ sensitive fluorescent dye to a passivated surface and measuring changes in the fluorescence as a result of membrane disruption using total internal reflection microscopy. Picomolar concentrations of Aβ42 oligomers could be observed to induce Ca2+ influx, which could be inhibited by the addition of a naturally occurring chaperone and a nanobody designed to bind to the Aβ peptide. We show that the assay can be used to study aggregates from other proteins, such as α‐synuclein, and to probe the effects of complex biofluids, such as cerebrospinal fluid, and thus has wide applicability.  相似文献   

11.
Ca2+, a ubiquitous but nuanced modulator of cellular physiology, is meticulously controlled intracellularly. However, intracellular Ca2+ regulation, such as mitochondrial Ca2+ buffering capacity, can be disrupted by 1O2. Thus, the intracellular Ca2+ overload, which is recognized as one of the important cell pro‐death factors, can be logically achieved by the synergism of 1O2 with exogenous Ca2+ delivery. Reported herein is a nanoscale covalent organic framework (NCOF)‐based nanoagent, namely CaCO3@COF‐BODIPY‐2I@GAG ( 4 ), which is embedded with CaCO3 nanoparticle (NP) and surface‐decorated with BODIPY‐2I as photosensitizer (PS) and glycosaminoglycan (GAG) targeting agent for CD44 receptors on digestive tract tumor cells. Under illumination, the light‐triggered 1O2 not only kills the tumor cells directly, but also leads to their mitochondrial dysfunction and Ca2+ overload. An enhanced antitumor efficiency is achieved via photodynamic therapy (PDT) and Ca2+ overload synergistic therapy.  相似文献   

12.
The effects of La3+ on proliferation, cell cycles, apoptosis and ion channels were investigated in mouse embryo fibroblast NIH 3T3 cells and its possible mechanisms were explored. Our data showed that La3+ promoted cell proliferation with increased S‐phase entry and inhibited the outward potassium currents in a concentration‐dependent manner in NIH 3T3 cells. La3+ and Ca2+ had synergistic effect on cell proliferation and cell cycles. It showed that Ca2+ was needed for La3+‐promoted cell cycle progression. Using the whole‐cell voltage‐clamp technique, we found that La3+ blocked the outward potassium current in a concentration‐dependent manner in NIH 3T3 cells. Lanthanum ions can increase intracellular Ca2+ concentration through inhibition of potassium currents, which induce a series of physiological changes and improve proliferation of cells. This may be one of the molecular mechanisms of lanthanum ions induced cell proliferation. The present work provides a new perspective for understanding the biological and toxicological effects of lanthanum.  相似文献   

13.
Organometallic compounds and surfactants constitute a potential threat to the environment. For that reason we have embarked on a study of their joint action on membranes. Model lecithin liposome membranes were modified with the cationic surfactant trimethyldodecylammonium bromide or the anionic surfactant sodium dodecylsulfonate, and the effect of tripropyltin chloride on the process of calcium (Ca2+) and praseodymium (Pr3+) desorption from the liposome membrane was studied. Kinetic constants for the process of Ca2+ ion desorption from lecithin liposome membranes were determined using the radiotracer method. The percentage of Pr3+ ion desorption from liposome membranes was measured by the 1H NMR method. Trimethyltin, triethyltin and tripropyltin alone caused increased Ca2+ and Pr3+ desorption from liposome membranes with increasing concentration of the compounds and alkyl chain length. For both the processes studied, a cationic surfactant brought about a lower effectiveness of tripropyltin and an anionic surfactant resulted in a higher effectiveness. The effect observed can be explained by changes in the surface charge of the membrane, induced by the surfactant modifiers and by the concomitant change in the partition coefficient of the organotin. The results obtained indicate a protective or harmful joint action of the surfactants used with tripropyltin on membranes. © 1997 John Wiley & Sons, Ltd.  相似文献   

14.
The Ca2+‐mediated conformational transition of the protein calmodulin (CaM) is essential to a variety of signal transduction pathways. Whether the transition in living cells is similar to that observed in buffer is not known. Here, we report the direct observation by 19F NMR spectroscopy of the transition of the Ca2+‐free and ‐bound forms in Xenopus laevis oocytes at different Ca2+ levels. We find that the Ca2+‐bound CaM population increased greatly upon binding the target protein myosin light‐chain kinase (MLCK) at the same Ca2+ level. Paramagnetic NMR spectroscopy was also exploited for the first time to obtain long‐range structural constraints in cells. Our study shows that 19F NMR spectroscopy can be used to obtain long‐range structural constraints in living eukaryotic cells and paves the way for quantification of protein binding constants.  相似文献   

15.
Gold nanorods (NRs) have plasmon‐resonant absorption and scattering in the near‐infrared (NIR) region, making them attractive probes for in vitro and in vivo imaging. In the cellular environment, NRs can provide scattering contrast for darkfield microscopy, or emit a strong two‐photon luminescence due to plasmon‐enhanced two‐photon absorption. NRs have also been employed in biomedical imaging modalities such as optical coherence tomography or photoacoustic tomography. Careful control over surface chemistry enhances the capacity of NRs as biological imaging agents by enabling cell‐specific targeting, and by increasing their dispersion stability and circulation lifetimes. NRs can also efficiently convert optical energy into heat, and inflict localized damage to tumor cells. Laser‐induced heating of NRs can disrupt cell membrane integrity and homeostasis, resulting in Ca2+ influx and the depolymerization of the intracellular actin network. The combination of plasmon‐resonant optical properties, intense local photothermal effects and robust surface chemistry render gold NRs as promising theragnostic agents.  相似文献   

16.
The inefficient endosomal escape of drugs or macromolecules is a major obstacle to achieving successful delivery to therapeutic targets. An efficient approach to circumvent this barrier is photochemical internalization (PCI), which uses light and photosensitizers for endosomal escape of the delivered macromolecules. The PCI mechanism is related to photogenerated singlet oxygen, but the mechanism is still unclear. In this study, we examined the relation of PCI to heat, pH and Ca2+ ions using cell penetrating peptide (CPP)‐cargo‐photosensitizer (Alexa546 or Alexa633) conjugates. A cell temperature changing experiment demonstrated that heat (thermal mechanism) does not significantly contribute to the photoinduced endosomal escape. Inhibition of V‐ATPase proton pump activity and endosomal pH upregulation indicated that PCI‐mediated endosomal escape needs endosomal acidification prior to photoirradiation. Imaging of the CPP‐cargo‐photosensitizer and Ca2+ ions during photostimulation showed that intracellular calcium increase is not the cause of the endosomal escape of the complex. The increment is mainly due to Ca2+ influx. These findings show the importance of extra‐ and intracellular milieu conditions in the PCI mechanism and enrich our understanding of PCI‐related changes in cell.  相似文献   

17.
Cationic polymers exhibit high cytotoxicity via strong interaction with cell membranes. To reduce cell membrane damage, a hydrophilic polymer is introduced to the cationic nanoparticle surface. The hydrophilic polymer coating of cationic nanoparticles resulted in a nearly neutral nanoparticle. These particles are applied to mouse fibroblast (3T3) and human cervical adenocarcinoma (Hela) cells. Interestingly, nanoparticles with a long cationic segment decrease cell activity regardless of cell type, while those with a short segment only affect 3T3 cell activity at lower concentrations less than 500 µg mL?1. Most nanoparticles are located inside 3T3 cells but on the cell membrane of Hela cells. The short cationic nanoparticle shows negligible cell membrane damage despite its high accumulation on Hela cell membranes. Cell activity changed by hydrophilic polymer‐coated cationic nanoparticles is caused by incorporated nanoparticle accumulation in the cells, not cell membrane damage. To suppress the cytotoxicity from the cationic polymer, cationic nanoparticle needs to completely cover with hydrophilic polymer so as not to exhibit the cationic effect and applies to cell with low concentrations to reduce the nonselective cytotoxicity from the cationic polymer.  相似文献   

18.
Basal cell carcinomas (BCCs) account for majority of skin malignancies in the United States. The incidence of BCCs is strongly associated with exposure of ultraviolet (UV) radiation. Nucleotide‐binding domain, leucine‐rich‐repeat‐containing family, pyrin domain‐containing 3 (NLRP3) inflammasome plays an important role in innate immune responses. Different stimuli such as toxins, microorganisms and particles released from injured cells activate the NLRP3 inflammasome. Activated NLRP3 results in activation of caspase‐1, which cleaves pro‐IL‐1β to active IL‐1β. In this study, we have shown that NLRP3 is expressed in human basal cell carcinomas. The proximal steps in activation of NLRP3 inflammasome are not well understood. Here, we have attempted to elucidate a critical role for Ca2+ mobilization in activation of the NLRP3 inflammasome by UVB exposure using HaCaT keratinocytes. We have demonstrated that UVB exposure blocks Ca2+ mobilization by downregulating the expression of sarco/endoplasmic reticulum Ca2+‐ATPase (SERCA2), a component of store‐operated Ca2+ entry that leads to activation of the NLRP3 inflammasome.  相似文献   

19.
Photolabile protecting groups (or “photocages”) enable precise spatiotemporal control of chemical functionality and facilitate advanced biological experiments. Extant photocages exhibit a simple input–output relationship, however, where application of light elicits a photochemical reaction irrespective of the environment. Herein, we refine and extend the concept of photolabile groups, synthesizing the first Ca2+‐sensitive photocage. This system functions as a chemical coincidence detector, releasing small molecules only in the presence of both light and elevated [Ca2+]. Caging a fluorophore with this ion‐sensitive moiety yields an “ion integrator” that permanently marks cells undergoing high Ca2+ flux during an illumination‐defined time period. Our general design concept demonstrates a new class of light‐sensitive material for cellular imaging, sensing, and targeted molecular delivery.  相似文献   

20.
Photodynamically induced changes in the cytoplasmic free calcium concentration ([Ca2+]i) and its role in cell damage were investigated in human skin fibroblasts using confocal laser microscopy. Fluorescence and absorbance spectrophotometry measurements indicate that the photosensitizer aluminum phthalocyanine tetrasulfonate (AlPcS4) binds to the plasma membrane and only after irradiation is able to enter the cells, causing massive morphologic alterations. Upon irradiation of sensitizer-treated cells, the increase in [Ca2+]i is related to the amount of light and extracellular [Ca2+]e. The increase in [Ca2+]i was substantially reduced in the absence of [Ca2+]e. Cell damage or death after photodynamic treatment was prevented and shifted toward higher fluence by increasing [Ca2+]i at high [Ca2+]e and was greater at low [Ca2+]e. Application of Ca2+ channel blockers, such as Co2+, Cd2+ or verapamil, could not prevent the increase of [Ca2+]i. Our results indicate that activation of the photosensitizer, AlPcS4, causes an influx of Ca2+, which protects cells from photodamage. At low [Ca2+]e and high fluence values, release of Ca2+ from internal stores probably as a protective measure occurs in order to increase the [Ca2+]i.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号