首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
1‐Formyl‐19‐oxobilin‐type tetrapyrroles are characteristic, abundant products of chlorophyll breakdown in senescent leaves. However, in some leaves, 1,19‐dioxobilin‐type chlorophyll catabolites (DCCs) lacking the formyl group accumulate instead. A P450 enzyme was identified in in vitro studies that removed the formyl group of a primary fluorescent chlorophyll catabolite (pFCC) and generated fluorescent DCCs. These DCCs are precursors of isomeric nonfluorescent DCCs (NDCCs). Here, we report a structural investigation of the NDCCs in senescent leaves of wild‐type Arabidopsis thaliana. Four new NDCCs were characterized, two of which carried a stereoselectively added hydroxymethyl group. Such formal DCC hydroxymethylations were previously found in DCCs in leaves of a mutant of A. thaliana. They are now indicated to be a feature of chlorophyll breakdown in A. thaliana, associated with the specific in vivo deformylation of pFCC en route to NDCCs.  相似文献   

2.
Colorless nonfluorescent chlorophyll (Chl) catabolites (NCCs) are formyloxobilin‐type phyllobilins, which are considered the typical products of Chl breakdown in senescent leaves. However, in degreened leaves of some plants, dioxobilin‐type Chl catabolites (DCCs) predominate, which lack the formyl group of the NCCs, and which arise from Chl catabolites by oxidative removal of the formyl group by a P450 enzyme. Here a structural investigation of the DCCs in the methylesterase16 mutant of Arabidopsis thaliana is reported. Eight new DCCs were identified and characterized structurally. Strikingly, three of these DCCs carry stereospecifically added hydroxymethyl groups, and represent bilin‐type linear tetrapyrroles with an unprecedented modification. Indeed, DCCs show a remarkable structural parallel, otherwise, to the bilins from heme breakdown.  相似文献   

3.
Photochemical and non-photochemical A/D-secocorrin→corrin-cyclizations of 19-carboxy- and 19-formyl-1-methylidene-1,19-secocorrinates. Decarboxylation (and deformylation) of nickel(II)-19-carboxy-(resp. 19-formyl)-corrinates Nickel (II) 1-methylidene-2,2,7,7,12,12-hexamethyl-15-cyano-19-carboxy-1,19-secocorrinate can be induced to cyclize with concomitant decarboxylation to the corresponding corrinate (Scheme 9). Experiments with deuterated derivatives (Scheme 10) indicate that in this decarboxylative A/D-secocorrin→corrin-cyclization the ring closure step precedes decarboxylation. In accord therewith is the finding that the corresponding intermediate nickel(II) 19-carboxy-corrinate (synthesized via photochemical cyclization of the corresponding cadmium complex, Schemes 6 and 9) decarboxylates under very mild conditions. Nickel(II) 1-methylidene-2,2,7,7,12,12-hexamethyl-15-cyano-19-formyl-1,19-secocorrinate cyclizes smoothly to the corresponding 19-formyl-corrinate in the presence of acetic acid/triethylamine. The formyl group of the cyclization product can be eliminated hydrolytically in essentially quantitative yield by treatment with 2N KOH in ethanolic solution (Scheme 11). The non-photochemical (A→D)-cyclization of 19-formyl-1,19-secocorrinoids represents formation of the corrin chromophore at the oxidation level of porphyrinogens and exemplifies how a C1-fragment that eventually leaves the ligand can fulfill a specific function in the (A→D)-ring closure to a corrin.  相似文献   

4.
In extracts of senescent leaves of spinach (Spinacia oleracea) that had degreened naturally after the onset of flowering, four colorless compounds, which had characteristic UV/VIS properties of nonfluorescent chlorophyll catabolites (NCCs), were detected by HPLC. From the extracts of 58.7 g of senescent leaves of Sp. oleracea, a two‐stage HPLC purification procedure provided ca. 15 μmol of So‐NCC‐2, the most abundant polar NCC in the leaves of this vegetable. So‐NCC‐2 was isolated as a slightly yellow powder and analyzed by spectroscopic means. The high‐resolution mass spectra indicated that So‐NCC‐2 has the same molecular formula as Hv‐NCC‐1 from barley (Hordeum vulgare), the first non‐green chlorophyll catabolite from a higher plant to be structurally analyzed. Homo‐ and hetero‐nuclear NMR spectroscopy indicated So‐NCC‐2 to have the same constitution as its epimer Hv‐NCC‐1, and to differ from the latter by the configuration at C(1). The catabolite from spinach could be identified with one of the products from OsO4 dihydroxylation at the vinyl group of the main NCC from Cercidiphyllum japonicum. Chlorophyll breakdown in spinach and in C. japonicum apparently involves an enzyme‐catalyzed reduction that occurs with the same stereochemical sense at C(1), but opposite to that in barley.  相似文献   

5.
Efficient assembly of 6‐substituted 4‐aryl‐5‐oxo‐1,4,5,7‐tetrahydropyrrolo[3,4‐b]pyridines (7a‐f) is described according to a Hantzsch type reaction from formyl‐ester 4 by imination, borohydride reduction and intramolecular thermal amino‐ester cyclization. The starting compound 4 was prepared in three steps from the readily available formyl derivative 1, methyl 4,4‐dimethoxy‐3‐oxobutanoate and methyl 3‐aminocrotonate.  相似文献   

6.
Four different seaweed extracts were employed as the dyes of dye sensitized solar cells (DSSCs) to investigate the light‐electron efficiency. The sensitizers, extracted from Nannochloropsis spp., Tetraselmis spp., Gracilaria spp., and Ulvales spp., showed their light‐electronic transfer ability in different light intensities. Among them, Ulvales output a higher light‐voltage, about 0.4 V. The output voltage increased when light intensity increased. Gracilaria extract produced a higher output voltage at 35 Lux, but its output voltage decreased over 500 Lux. The sensitizers extracted from these seaweeds had monochromatic incident photon‐to‐electron conversion efficiencies (IPCE) between 23‐61% in 220‐260 nm wavelengths. Among them, Ulvales output higher IPCE than Tetraselmis and Nannochloropsis. SEM analysis of DSSC surfaces revealed that the efficiency of seaweed DSSCs was governed by chlorophyll size. The chlorophyll particle size of Ulvales spp. was the largest. The chlorophyll particle size of Gracilaria spp. was the smallest and yielded the lowest IPCE.  相似文献   

7.
《化学:亚洲杂志》2017,12(7):759-767
Zinc chlorophyll derivatives Zn‐1 – 3 possessing a tertiary amino group at the C31 position have been synthesized through reductive amination of methyl pyropheophorbide‐d obtained from naturally occurring chlorophyll‐a . In a dilute CH2Cl2 solution as well as in a dilute 10 %(v/v) CH2Cl2/hexane solution, Zn‐1 possessing a dimethylamino group at the C31 position showed red‐shifted UV/Vis absorption and intensified exciton‐coupling circular dichroism (CD) spectra at room temperature owing to its dimer formation via coordination to the central zinc by the 31‐N atom of the dimethylamino group. However, Zn‐2/3 bearing 31‐ethylmethylamino/diethylamino groups did not. The difference was dependent on the steric factor of the substituents in the tertiary amino group, where an increase of the carbon numbers on the N atom reduced the intermolecular N⋅⋅⋅Zn coordination. UV/Vis, CD, and 1H NMR spectroscopic analyses including DOSY measurements revealed that Zn‐1 formed closed‐type dimers via an opened dimer by single‐to‐double axial coordination with an increase in concentration and a temperature decrease in CH2Cl2, while Zn‐2/3 gave open and flexible dimers in a concentrated CH2Cl2 solution at low temperature. The supramolecular closed dimer structures of Zn‐1 were estimated by molecular modelling calculations, which showed these structures were promising models for the chlorophyll dimer in a photosynthetic reaction center.  相似文献   

8.
Chlorophyll breakdown is a visual phenomenon of leaf senescence and fruit ripening. It leads to the formation of colorless chlorophyll catabolites, a group of (chlorophyll‐derived bilin‐type) linear tetrapyrroles. Here, analysis and structure elucidation of the chlorophyll breakdown products in leaves of banana (Musa acuminata) is reported. In senescent leaves of this monocot all chlorophyll catabolites identified were hypermodified fluorescent chlorophyll catabolites (hmFCCs). Surprisingly, nonfluorescent chlorophyll catabolites (NCCs) were not found, the often abundant and apparently typical final chlorophyll breakdown products in senescent leaves. As a rule, FCCs exist only fleetingly, and they isomerize rapidly to NCCs in the senescent plant cell. Amazingly, in the leaves of banana plants, persistent hmFCCs were identified that accounted for about 80 % of the chlorophyll broken down, and yellow leaves of M. acuminata display a strong blue luminescence. The structures of eight hmFCCs from banana leaves were analyzed by spectroscopic means. The massive accumulation of the hmFCCs in banana leaves, and their functional group characteristics, indicate a chlorophyll breakdown path, the downstream transformations of which are entirely reprogrammed towards the generation of persistent and blue fluorescent FCCs. As expressed earlier in related studies, the present findings call for attention, as to still elusive biological roles of these linear tetrapyrroles.  相似文献   

9.
A new simple and convenient method of synthesis of ethyl 1‐aryl‐4‐formyl‐1H‐pyrazole‐3‐carboxylates from aromatic amines via diazonium salts has been developed. Hydrolysis and hydrazinolyization of these compounds has been investigated.  相似文献   

10.
11.
The reactions of the 2,3‐dihydro‐1H‐furan‐2,3‐dione 1 with Schiff bases 2a‐f at 60–70°C furnish the corresponding 2,3‐dihydro‐1H‐pyrole‐2,3‐diones 3a‐f . The heating of 3a‐d afforded the corresponding 4‐methoxybenzoyl(N‐arylimidoyl)k:etenes 4a‐d as intermediates which undergo a very facile cyclization to quinoline‐4‐ones 5a‐d . According to our PM3 calculations, fragmentation of 4‐formyl‐2,3‐dihydro‐1H‐pyrole‐2,3‐dione and 1,4‐cyclization of formyl(N‐phenylimidoyl)k:etene IN1 to azetin‐2‐one IN2 and oxe‐tone IN3 are pseudopericyclic reactions with two orbital connections, proceed via planar transition structures. Due to to the possibility of syn and anti conformations of the imine phenyl, there are eight E/Z‐iso‐mers of IN1 . In addition, we have also calculated reaction mechanism of formation of quinoline‐4‐ones by the PM3 method.  相似文献   

12.
In this work, possible approaches to the synthesis of 1,2,5‐substituted 4‐phosphoryl‐3‐formylpyrroles have been considered. As a result, two methods for the synthesis of 4‐(diphenylphosphoryl)‐1‐(4‐ethoxyphenyl)‐2,5‐dimethyl‐1H‐pyrrole‐3‐carbal‐dehyde were proposed; the highest yields gives formylation of 3‐(diphenylphosphorothioyl)‐1‐(4‐ethoxyphenyl)‐2,5‐dimethyl‐1H‐pyrrole. The formyl fragment was successfully converted into a Schiff base with phenethylamine, and the phosphoryl group has been reduced to phosphine with silicochloroform, which suggests a promising approach to the synthesis of chiral bidentate phosphine ligands. © 2013 Wiley Periodicals, Inc. Heteroatom Chem 24:146–151, 2013; View this article online at wileyonlinelibrary.com . DOI 10.1002/hc.21069  相似文献   

13.
In senescent leaves, chlorophyll typically is broken down to colorless and essentially photo‐inactive phyllobilanes, which are linear tetrapyrroles classified as “nonfluorescent” chlorophyll catabolites (NCCs) and dioxobilane‐type NCCs (DNCCs). In homogenates of senescent leaves of the tropical evergreen Spathiphyllum wallisii, when left at room temperature and extracted with methanol, the major endogenous, naturally formed NCC was regio‐ and stereoselectively oxidized (in part) to a mixture of its 15‐hydroxy and 15‐methoxy derivative. In the absence of methanol in the extract, only the 15‐OH‐NCC was observed. The endogenous oxidation process depended upon molecular oxygen. It was inhibited by carbon monoxide, as well as by keeping the leaf homogenate and extract at low temperatures. The remarkable “oxidative activity” was inactivated by heating the homogenate for 10 min at 70 °C. Upon addition of a natural epimeric NCC (epiNCC) to the homogenate of senescent or green Sp. wallisii leaves at room temperature, the exogenous epiNCC was oxidized regio‐ and stereoselectively to 15‐OH‐epiNCC and 15‐OMe‐epiNCC. The identical two oxidized epiNCCs were also obtained as products of the oxidation of epiNCC with dicyanodichlorobenzoquinone (DDQ). Water elimination from 15‐OH‐epiNCC occurred readily and gave a known “yellow” chlorophyll catabolite (YCC). The endogenous oxidation process, described here, may represent the elusive natural path from the colorless NCCs to yellow and pink coloured phyllobilins, which were found in (extracts of) some senescent leaves.  相似文献   

14.
The valuable new synthetic intermediates, ethyl 4‐, 6‐ and 7‐formyl‐1H‐indole‐2‐carboxylates ( 10, 11, 12 ) were prepared from 2‐ethoxycarbonyl‐1H‐indole‐4‐, 6‐ and 7‐methanesulfonic acids ( 1, 2, 3 ), respectively. The transformation of sulfomethyl group to formyl function was accomplished through elimination of SO2 to yield ethyl 4‐, 6‐ and 7‐chloromethyl‐1H‐indole‐2‐carboxylates ( 4, 5, 6 ), hydrolysed to ethyl 4‐, 6‐ and 7‐hydroxymethyl‐1H‐indole‐2‐carboxylates ( 7, 8, 9 ), then oxidized to aldehydes ( 10, 11, 12 ). Protection at N1 of indole was not necessary. A marked increase in the rate of hydrolysis of 7‐chloromethyl‐indoles compared to that of 4‐ and 6‐(chloromethyl)indoles was observed.  相似文献   

15.
5‐Amino‐4‐formyl pyrazole carboxylate gave facile reactions with malononitrile, hydrazine, and ketones in the presence of piperidine furnished substituted pyrazolo[3,4‐b]pyridines and pyrazolo[3,4‐b]quinolones. The pyridazine sulfonamides were obtained by the reaction of 5‐chloro 4‐formyl pyrazole carboxylate with sulfonamide derivatives.  相似文献   

16.
Producing polyester monomer 2,5‐furandicarboxylic acid (FDCA) from biomass as an alternative to fossil‐derived terephthalic acid has drawn much attention from both academy and industry. In this work, an efficient FDCA synthesis was proposed from 10.6 wt % 2,5‐diformylfuran (DFF) in acetic acid using a combined catalytic system of Co/Mn acetate and N‐hydroxyimides. The intermediate product of 5‐formyl‐2‐furandicarboxylic acid (FFCA) possesses the least reactive formyl group. N‐hydroxysuccinimide was found to be superior to N‐hydroxyphthalimide in catalyzing the oxidation of the formyl group in FFCA intermediate, affording a near 95 % yield of FDCA under mild conditions of 100 °C. Trace maleic anhydride was detected as by‐product, which mainly came from the oxidative cleavage of DFF via furfural, furoic acid and 5‐acetoxyl‐2(5H)‐furanone as intermediates.  相似文献   

17.
Methyl 131‐(di)cyanomethylene‐pyropheophorbides were synthesized by Knoevenagel reactions of the corresponding 131‐oxo‐chlorins prepared from modifying chlorophyll‐a with malononitrile or cyanoacetic acid. Alternatively, methyl 131‐cyanomethylene‐pyropheophorbides were produced by Wittig reactions of 131‐oxo‐chlorins with Ph3P=CHCN. Self‐aggregation of zinc complexes of the semi‐synthetic chlorophyll derivatives possessing a hydroxy or methoxy group at the 31‐position was examined in 1%(v/v) tetrahydrofuran or dichloromethane and hexane by electronic absorption and circular dichroism spectroscopy. Although intermolecular hydrogen‐bonding between the 31‐hydroxy and 131‐oxo groups of bacteriochlorophylls‐c/d/e/f was essential for their self‐aggregation in natural light‐harvesting antenna systems (=chlorosomes), zinc 31‐hydroxy‐131‐di/monocyanomethylene‐chlorins self‐aggregated in the less/lesser polar organic solvents to form chlorosome‐like large oligomers in spite of lacking the 131‐oxo moiety as the hydrogen‐bonding acceptor. Zinc 31‐methoxy‐131‐dicyanomethylene‐chlorin gave similar self‐aggregates regardless of lack of both the 31‐hydroxy and 131‐oxo groups. The present self‐aggregation was ascribable to stronger coordination of the 31‐oxygen atom to the central zinc than the conventional systems, where the electron‐withdrawing cyano group(s) increased the coordinative ability of the central zinc through the chlorin π‐system.  相似文献   

18.
The enhancement of the light absorption ability of synthetic chlorophyll derivatives is demonstrated. Chlorophyll derivatives directly conjugated with a difluoroboron 1,3‐diketonate group at the C3 position were synthesized from methyl pyropheophorbide‐d through Barbier acylmethylation of the C3‐formyl moiety, oxidation of the C3‐carbinol, and difluoroboron complexation of the diketonate. Electronic absorption spectra in a diluted solution showed that the synthetic conjugates gave an absorption band at λ=400–500 nm, with a Qy band shifted to a longer wavelength of λ≈700 nm. DFT calculations demonstrated that the absorption bands and redshifts were ascribable to the coupling of the LUMO of chlorin with that of the difluoroboron diketonate moiety. The introduction of a pyrenyl group at the C33‐position of the conjugate afforded an additional charge‐transfer band over λ=500 nm, producing a pigment that bridged the green gap in standard chlorophylls.  相似文献   

19.
The primary fluorescent chlorophyll catabolite 1 (Ca‐FCC‐2) from sweet pepper (Capsicum annuum) has similar optical properties, but is slightly less polar than the primary FCC (pFCC; 2 ) from senescent cotyledons of oilseed rape (Brassica napus). Ca‐FCC‐2 was prepared from pheophorbide a using an enzyme extract from ripe C. annuum chromoplasts. The catabolite Ca‐FCC‐2 ( 1 ) could be determined from fast‐atom‐bombardment (FAB) mass spectra to be an isomer of pFCC ( 2 ). The constitution of Ca‐FCC‐2 was determined by homo‐ and heteronuclear magnetic‐resonance experiments and was found to be identical to that of pFCC. Further 2D‐homonuclear spectra of Ca‐FCC‐2 revealed it to differ from pFCC by the configuration at the methine atom C(1), whose configuration results from the action of red chlorophyll catabolite reductase (RCCR). The occurrence of two primary FCCs that are epimeric at C(1) provides a structural basis for the recent observation of two types of RCCRs among higher plants.  相似文献   

20.
Photosynthetic organisms are adapted to light characteristics in their habitat in part via the spectral characteristics of the associated chlorophyll pigments, which differ in the position of a formyl group around the chlorin macrocycle (chlorophylls b, d, f) or no formyl group (chlorophyll a). To probe the origin of this spectral tuning, the photophysical and electronic structural properties of a new set of synthetic chlorins are reported. The zinc and free base chlorins have a formyl group at either the 2‐ or 3‐position. The four compounds have fluorescence yields in the range 0.19–0.28 and singlet excited‐state lifetimes of ca 4 ns for zinc chelates and ca 8 ns for the free base forms. The photophysical properties of the 2‐ and 3‐formyl zinc chlorins are similar to those observed previously for 13‐formyl or 3,13‐diformyl chlorins, but differ markedly from those for 7‐formyl analogs. Molecular‐orbital characteristics obtained from density functional theory (DFT) calculations were used as input to spectral simulations employing the four‐orbital model. The analysis has uncovered the key changes in electronic structure engendered by the presence/location of a formyl group at various macrocycle positions, which is relevant to understanding the distinct spectral properties of the natural chlorophylls a, b, d and f.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号