首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An integrated experimental and computational investigation reveals that surface lattice oxygen of copper oxide (CuO) nanoleaves activates the formyl C H bond in glucose and incorporates itself into the glucose molecule to oxidize it to gluconic acid. The reduced CuO catalyst regains its structure, morphology, and activity upon reoxidation. The activity of lattice oxygen is shown to be superior to that of the chemisorbed oxygen on the metal surface and the hydrogen abstraction ability of the catalyst is correlated with the adsorption energy. Based on the present investigation, it is suggested that surface lattice oxygen is critical for the oxidation of glucose to gluconic acid, without further breaking down the glucose molecule into smaller fragments, because of C C cleavage. Using CuO nanoleaves as catalyst, an excellent yield of gluconic acid is also obtained for the direct oxidation of cellobiose and polymeric cellulose, as biomass substrates.  相似文献   

2.
3.
高分散的炭载Au纳米催化剂的制备、表征和催化活性   总被引:7,自引:0,他引:7  
采用柠檬酸钠还原-胶体负载法, 制备了高分散的炭载Au纳米催化剂, 并以液相催化氧化葡萄糖为葡萄糖酸钠的反应评价了Au/C催化剂的活性. 研究结果表明, 金溶胶制备过程中柠檬酸钠的用量对粒子尺寸以及所获催化剂的催化活性有重要影响; 催化剂在多次使用之后活性的降低可能是由于在活性炭表面金粒子活性位点上形成的Auδ+-Oδ-化合态减少的缘故. 同时比较了制备的Au/C和商业Pd/C催化剂对葡萄糖的液相催化氧化反应, 证明Au/C催化剂明显优于Pd/C催化剂.  相似文献   

4.
《中国化学快报》2023,34(11):108370
Selective oxidation of biomass-derived monosaccharide into high value-added chemicals is highly desirable from sustainability perspectives. Herein, we demonstrate a surface-functionalized carbon nanotube-supported gold (Au/CNT-O and Au/CNT-N) catalyst for base-free oxidation of monosaccharide into sugar acid. Au/CNT-O and Au/CNT-N surfaces successfully introduced oxygen- and nitrogen-containing functional groups, respectively. The highest yields of gluconic acid and xylonic acid were 93.3% and 94.3%, respectively, using Au/CNT-N at 90 °C for 240 min, which is higher than that of using Au/CNT-O. The rate constants for monosaccharide decomposition and sugar acid formation in Au/CNT-N system were higher, while the corresponding activation energy was lower than in Au/CNT-O system. DFT calculation revealed that the mechanism of glucose oxidation to gluconic acid involves the adsorption and activation of O2, adsorption of glucose, dissociation of the formyl C-H bond and formation of O-H bond, and formation and desorption of gluconic acid. The activation energy barrier for the glucose oxidation over Au/CNT-N is lower than that of Au/CNT-O. The nitrogen-containing functional groups are more beneficial for accelerating monosaccharide oxidation and enhancing sugar acid selectivity than oxygen-containing functional groups. This work presents a useful guidance for designing and developing highly active catalysts for producing high-value-added chemicals from biomass.  相似文献   

5.
The Cu-Zr-Ce-O catalysts prepared using the coprecipitation method exhibited better catalytic performance for CO selective oxidation. The Cu-Zr-Ce-O catalysts pretreated with different methods were studied by CO-TPR and XPS techniques. The results showed that the Cu-Zr-Ce-O catalyst pretreated with oxygen exhibited the best catalytic performance and had the widest operating temperature window, with CO conversion above 99% from 160 to 200 ℃. The O2 pretreatment caused an enrichment of the oxygen storaged on the Cu active species and promoted the conversion of adsorbed oxygen into surface lattice oxygen. It also improved the amount of Cu+/Cu^2+ ionic pair, and then facilitated the formation of CuO active species on the catalyst for selective CO oxidation.  相似文献   

6.
In this paper, we report on the amino acids-/citric acid-/tartaric acid-assisted morphologically controlled hydrothermal synthesis of micro-/nanostructured crystalline copper oxides (CuO). These oxides were characterized by means of X-ray diffraction, nitrogen sorption, scanning electron microscopy, Fourier transform infrared, and UV-visible spectroscopy. The surface area of metal oxides depends on the amino acid used in the synthesis. The formation mechanisms were proposed based on the experimental results, which show that amino acid/citric acid/tartaric acid and hydrothermal time play an important role in tuning the morphology and structure of CuO. The catalytic activity of as-synthesized CuO was demonstrated by catalytic oxidation of methylene blue in the presence of hydrogen peroxide (H(2)O(2)). CuO synthesized using tyrosine was found to be the best catalyst compared to a variety of CuO synthesized in this study. CuO (synthesized in this study)-modified electrodes were used for the construction of non-enzymatic sensors, which displayed excellent electrocatalytic response for the detection of H(2)O(2) and glucose compared to conventional CuO. The high electrocatalytic response observed for the CuO synthesized using tyrosine can be correlated with the large surface area, which enhances the accessibility of H(2)O(2)/glucose molecule to the active site that results in high observed current. The methodology adopted in the present study provides a new platform for the fabrication of CuO-based high-performance glucose and other biosensors.  相似文献   

7.

Oxidation of a mixture of glucose and arabinose over Au particles deposited on porous carbons, N-doped carbons and carbon nitrides was investigated at 70 °C, under constant pH of 8, and oxygen partial pressure 0.125 atm. In particular, Au deposited on nitrogen-containing carbon-based mesoporous structures demonstrated activity in the oxidation of the sugars to the corresponding aldonic acids higher than gold deposited on undoped carbon supports (conversion of glucose up to ca. 60%, arabinose–ca. 30% after 200 min). The results can be explained by the basic nature of the supports leading to an increase in the polarity of the carbon surface and the oxygen activation. Glucuronic acid (with selectivity ca. 10–93.5%) together with gluconic acid was formed as a result of glucose oxidation, while arabinose was selectively oxidized to arabinonic acid.

  相似文献   

8.
VPO催化剂的再生性质及其对晶格氧选择氧化丙烷的影响   总被引:2,自引:0,他引:2  
王鉴  赵如松 《分子催化》2000,14(1):11-14
采用脉冲反应器,研究了VPO催化剂的再生性质及其对晶格氧选择氧化丙烷制丙烯酸和乙酸的影响,结果表明,VPO催化剂与气相分子氧反应的速度要比丙烷与其 和氧反应的速度慢许多,因此以丙烷-O2共进料方式进行反应时,催化剂氧化再生是速度控制步骤,水是影响催化剂选择性的重要因素,但对活性影响不大,在反应温度下,水在VPO催化剂 为可逆吸附,容易脱附流失,催化丙烷反应生成目的的产物的活性中心很稳定,主要是晶格  相似文献   

9.
《中国化学快报》2022,33(12):5223-5227
A novel Mo-doped CuO catalyst is developed and used for low-temperature NH3-SCR reaction. Compared with the undoped CuO sample, the Mo doped CuO catalyst shows an increased SCR performance with above 80% NOx conversion at 175 °C. The XRD and Raman results have confirmed the incorporation of Mo metal ions into CuO lattice to form Mo-O-Cu species which may be related to the enhanced SCR activity. The XPS and UV–vis results reveal the creation of electron interaction between Cu and Mo in this Mo-O-Cu system which provides an increased amount of Lewis and Brønsted acid sites, thereby promoting the adsorption capacity of NH3 and NOx as verified by NH3-TPD and NOx-TPD characterization. Besides, it also promotes the formation of oxygen vacancies, leading to the increasing of chemisorbed oxygen species, which improves the NO oxidation to NO2 activity. Furthermore, in situ DRIFTS technology was also used to study the reaction mechanism of this Mo doped CuO catalyst. The formed NO2 could react with NHx (x = 3, 2) species to enhance the low-temperature NH3-SCR activity via the “fast-SCR” reaction pathway. The nitrate and nitrite ad-species may react with NH3 and NH4+ ad-species through the L-H pathway.  相似文献   

10.
Fe对Pt-Fe/C催化剂电催化氧还原反应活性的影响   总被引:1,自引:1,他引:0  
制备了用作直接甲醇燃料电池的碳载Pt-Fe(Pt-Fe/C)阴极催化剂, X射线能量色散谱(EDX)、X射线衍射谱和电化学测量的结果表明, 在Pt-Fe/C催化剂中, Fe以3种形式存在. 质量分数大约为20%的Fe进入Pt的晶格, 形成Pt-Fe合金, 质量分数大约为80%的Fe没有进入Pt的晶格而以Fe和Fe2O3的形式单独存在. 该催化剂经酸处理后, 非合金化Fe和Fe2O3被溶解, 而使Pt-Fe/C催化剂的电化学活性比表面积要比未经酸处理前的增加约30%左右, 导致Pt-Fe/C催化剂对氧还原的电催化活性优于未经酸处理前的Pt-Fe/C催化剂. 研究结果表明, Pt-Fe/C催化剂的电化学活性比表面积对氧还原的电催化活性起重要的作用, 另外, 只有与Pt形成合金的Fe能提高Pt对氧还原的电催化活性, 而非合金化的Fe对Pt催化剂对氧还原的电催化活性基本没有影响.  相似文献   

11.
Pd-Co/C催化剂上葡萄糖的催化氧化反应   总被引:4,自引:0,他引:4  
Pd-Co/C催化剂上葡萄糖的催化氧化反应  相似文献   

12.
The surface oxygen distribution the active oxygen species for CO on the perovskite-type catalyst La1-xSrxCo1-xMnxO3 and its catalytic oxidation activity with CO as probe were investigated by means of XRD, TPD and XPS in a continuous flow microreactor. Results showed that different adsorbed oxygen species and lattice oxygen were distributed on the catalyst surface. Meanwhile, the surface lattice oxygen of the oxides was reacting in the course of CO oxidation. This leads to the conclusion that, when x=0.6, the catalyst shows the best oxidative activity and lower starting temperature.  相似文献   

13.
Selective oxidation of propane by lattice oxygen of vanadium-phosphorus oxide (VPO) catalysts was investigated with a pulse reactor in which the oxidation of propane and the re-oxidation of catalyst were implemented alternately in the presence of water vapor. The principal products are acrylic acid (AA),acetic acid (HAc), and carbon oxides. In addition, small amounts of C1 and C2 hydrocarbons were also found, molar ratio of AA to HAc is 1.4-2.2. The active oxygen species are those adsorbed on catalyst surface firmly and/or bound to catalyst lattice, i.e. lattice oxygen; the selective oxidation of propane on VPO catalysts can be carried out in a circulating fluidized bed (CFB) riser reactor. For propane oxidation over VPO catalysts, the effects of reaction temperature in a pulse reactor were found almost the same as in a steady-state flow reactor. That is, as the reaction temperature increases, propane conversion and the amount of C1 C2 hydrocarbons in the product increase steadily, while selectivity to acrylic acid and to acetic acid increase prior to 350℃ then begin to drop at temperatures higher than 350℃, and yields of acrylic acid and of acetic acid attained maximum at about 400℃. The maximum yields of acrylic acid and of acetic acid for a single-pass are 7.50% and 4.59% respectively, with 38.2% propane conversion. When theamount of propane pulsed decreases or the amount of catalyst loaded increases, the conversion increases but the selectivity decreases. Increasing the flow rate of carrier gases causes the conversion pass through a minimum but selectivity and yields pass through a maximum. In a fixed bed reactor, it is hard to obtainhigh selectivity at a high reaction conversion due to the further degradation of acrylic acid and acetic acid even though propane was oxidized by the lattice oxygen. The catalytic performance can be improved inthe presence of excess propane. Propylene can be oxidized by lattice oxygen of VPO catalyst at 250℃, nevertheless, selectivity to AA and to HAc are even lower, much more acetic acid was produced (molar ratio of AA to HAc is 0.19:1-0.83:1) though the oxidation products are the same as from propane.  相似文献   

14.
 采用化学还原法制备了聚乙烯吡咯烷酮 (PVP) 稳定的纳米 Au 溶胶, 这种 Au 溶胶在葡萄糖空气氧化制葡萄糖酸反应中具有良好的催化性能. 考察了 PVP 加入量和氯金酸前驱液的浓度对反应活性的影响. 紫外-可见吸收光谱和透射电镜分析结果表明, 含有较小 Au 粒子的 Au 溶胶体系具有较高的催化活性. 当 PVP/Au 质量比为 40, 氯金酸浓度为100 μg/ml 时, 得到稳定的 Au 溶胶体系具有金粒子尺寸小、分布均匀的特点, 对葡萄糖氧化反应活性高, 葡萄糖的转化率达到 54.4%.  相似文献   

15.
铜、锰氧化物的表面过剩氧及其甲苯催化燃烧活性   总被引:9,自引:0,他引:9  
研究了负载型Cu-Mn-O催化剂对烃类深度氧化的活性,并将XRD分析、电子探针考察和表面过剩氧浓度的分布测定等结果与催化剂活性进行了关联.以甲苯催化燃烧为模型反应,除用常规的微反考察其动力学性质外,还用脉冲反应技术研究了表面过剩氧的氧化功能和甲苯的吸附等.Mn/Cu原子比为0.88~0.9时,催化剂活性最好.这是由CuO和CuMn2O4的功能匹配决定的,后者提供与催化作用有关的表面过剩氧,前者促进甲苯的吸附.对催化剂的作用机理也进行了初步的探讨.  相似文献   

16.

A simple ionic liquid-assisted approach for the fabrication of graphene-based nanocomposite is reported. Pd–CuO/rGO and Au–CuO/rGO nanocomposites are successfully fabricated with the assistance of the ionic liquid 1-butyl-3-methyl imidazolium tetrafluoroborate. The physicochemical features of nanocomposite are systematically characterized by XRD, FT-IR, Raman spectroscopy, XPS, TGA, FESEM, AFM, and HRTEM. Carbon monoxide has been used as a probe molecule to emphasize the performance of the fabricated materials. The results indicate that the incorporation of a little quantity of ionic liquid results in the creation of uniformly dispersed NPs simultaneously with the reduction of graphene oxide (GO) into rGO, which leads to a low-temperature CO oxidation process. Besides, the Au–CuO/rGO catalyst achieved excellent durability in CO oxidation for 14 h, without detectable deactivation. The low-temperature CO oxidation was mainly induced by the synergistic effects between the components of catalysts. The Au or Pd and CuO combination not only generates more interfaces, which is more favorable for the activation of oxygen but also enhances the catalyst reduction behavior. Consequently, a graphene composite catalyst can be considered a potential CO oxidation candidate.

  相似文献   

17.
Catalytic reactions with oxygen are divided into two groups: electrophilic oxidation proceeding through activation of oxygen, and nucleophilic oxidation in which insertion of nucleophilic oxygen species into previously activated organic molecule occurs. The role of different types of lattice oxygen in the nucleophilic oxygen addition as well as catalyst properties determining the electrophilic pathway are discussed.  相似文献   

18.
CuO/Al2O3, CuO/CeO2-Al2O3, and CuO/La2O3-Al2O3 (denoted as Cu/Al, Cu/CeAl, and Cu/LaAl) catalysts were prepared by an impregnation method. CuO species and CuO/Al2O3 thermal solid-solid interaction were characterized by in situ XRD, Raman spectroscopy and H2-TPR techniques. For the Cu/Al catalyst, a CuAl2O4 phase exists between the CuO and Al2O3 layer and the CuO phase exists on the surface in both highly dispersed and bulk forms. For the Cu/CeAl catalyst, there is highly dispersed and bulk CuO on the surface, but most of the CuO has transferred into the internal layer of CeO2 as bulk CuO and CuAl2O4. For the Cu/LaAl catalyst, only bulk CuO is present on the surface of the catalyst and no CuAl2O4 is formed. The catalytic activity order for CO oxidation is Cu/CeAl>Cu/Al>Cu/LaAl. The highly dispersed CuO on the catalyst surface may be the active phase for CO oxidation. The results show that the addition of CeO2 not only promotes both the transference of CuO and the formation of CuAl2O4 but also favors the CO oxidation due to the association of highly dispersed CuO with CeO2, while La2O3 hinders the transference of CuO and the formation of CuAl2O4.  相似文献   

19.
直接甲酸燃料电池用碳载铁卟啉-Au复合阴极催化剂的性能   总被引:1,自引:0,他引:1  
研究了用于直接甲酸燃料电池(DFAFC)的碳载铁卟啉(FeTPP/C)、金复合阴极催化剂(FeTPP-Au/C)对氧还原的电催化性能和抗甲酸能力。结果表明,FeTPP-Au/C催化剂对氧气还原反应的电催化活性要远优于碳载铁卟啉(FeTPP/C)和碳载Au(Au/C)催化剂。而且,FeTPP-Au/C催化剂对甲酸氧化没有催化活性,因此,FeTPP-Au/C催化剂也有很好的抗甲酸能力。所以,FeTPP-Au/C催化剂适合作为DFAFC的阴极催化剂。  相似文献   

20.
为了进一步探明葡萄糖在铂电极上的氧化机理,用循环伏安法(CV)在-0.9~0.4 V(相对于饱和甘汞参比电极)内研究了葡萄糖在铂电极上催化氧化行为,首次详细报道了葡萄糖在电化学氧化过程中的电位振荡现象,并用电流扫描法表征了葡萄糖的电位振荡情况.电流扫描结果表明,在较慢的电流扫描速度下,电极过程出现了明显的电位振荡.说明电极上产生了毒化中间物,电位振荡是由于毒化中间物在电极上的吸附和在高电位下氧化除去引起的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号