首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reaction of a lithium boryl, [(THF)2Li{B(DAB)}] (DAB=[(DipNCH)2]2?, Dip=2,6‐diisopropylphenyl), with a dinuclear magnesium(I) compound [{(MesNacnac)Mg}2] (MesNacnac=[HC(MeCNMes)2]?, Mes=mesityl) unexpectedly afforded a rare example of a terminal magnesium boryl species, [(MesNacnac)(THF)Mg{B(DAB)}]. Attempts to prepare the magnesium boryl via a salt metathesis reaction between the lithium boryl and a β‐diketiminato magnesium iodide compound, instead led to an intractable mixture of products. Similarly, reaction of the lithium boryl with a β‐diketiminato beryllium bromide precursor, [(DepNacnac)BeBr] (Dep=2,6‐diethylphenyl) did not give a beryllium boryl, but instead afforded an unprecedented example of a beryllium substituted diazaborole heterocycle, [{(DepNacnac)Be(4‐DAB?H)}BBr]. For sake of comparison, the same group 2 halide precursor compounds were treated with a potassium gallyl analogue of the lithium boryl, viz. [(tmeda)K{:Ga(DAB)}] (tmeda=N,N,N’,N’‐tetramethylethylenediamine), but no reactions were observed.  相似文献   

2.
Additions of beryllium–halide bonds in the simple beryllium dihalide adducts, [BeX2(tmeda)] (X=Br or I, tmeda=N,N,N′,N′‐tetramethylethylenediamine), across the metal center of a neutral aluminum(I) heterocycle, [:Al(DipNacnac)] (DipNacnac=[(DipNCMe)2CH]?, Dip=2,6‐diisopropylphenyl), have yielded the first examples of compounds with beryllium–aluminum bonds, [(DipNacnac)(X)Al‐Be(X)(tmeda)]. For sake of comparison, isostructural Mg–Al and Zn–Al analogues of these complexes, viz. [(DipNacnac)(X)Al‐M(X)(tmeda)] (M=Mg or Zn, X=I or Br) have been prepared and structurally characterized. DFT calculations reveal all compounds to have high s‐character metal–metal bonds, the polarity of which is consistent with the electronegativities of the metals involved. Preliminary reactivity studies of [(DipNacnac)(Br)Al‐Be(Br)(tmeda)] are reported.  相似文献   

3.
The preparation and characterization of a series of magnesium(II) iodide complexes incorporating β‐diketiminate ligands of varying steric bulk and denticity, namely, [(ArNCMe)2CH]? (Ar=phenyl, (PhNacnac), mesityl (MesNacnac), or 2,6‐diisopropylphenyl (Dipp, DippNacnac)), [(DippNCtBu)2CH]? (tBuNacnac), and [(DippNCMe)(Me2NCH2CH2NCMe)CH]? (DmedaNacnac) are reported. The complexes [(PhNacnac)MgI(OEt2)], [(MesNacnac)MgI(OEt2)], [(DmedaNacnac)MgI(OEt2)], [(MesNacnac)MgI(thf)], [(DippNacnac)MgI(thf)], [(tBuNacnac)MgI], and [(tBuNacnac)MgI(DMAP)] (DMAP=4‐dimethylaminopyridine) were shown to be monomeric by X‐ray crystallography. In addition, the related β‐diketiminato beryllium and calcium iodide complexes, [(MesNacnac)BeI] and [{(DippNacnac)CaI(OEt2)}2] were prepared and crystallographically characterized. The reductions of all metal(II) iodide complexes by using various reagents were attempted. In two cases these reactions led to the magnesium(I) dimers, [(MesNacnac)MgMg(MesNacnac)] and [(tBuNacnac)MgMg(tBuNacnac)]. The reduction of a 1:1 mixture of [(DippNacnac)MgI(OEt2)] and [(MesNacnac)MgI(OEt2)] with potassium gave a low yield of the crystallographically characterized complex [(DippNacnac)Mg(μ‐H)(μ‐I)Mg(MesNacnac)]. All attempts to form beryllium(I) or calcium(I) dimers by reductions of [(MesNacnac)BeI], [{(DippNacnac)CaI(OEt2)}2], or [{(tBuNacnac)CaI(thf)}2] have so far been unsuccessful. The further reactivity of the magnesium(I) complexes [(MesNacnac)MgMg(MesNacnac)] and [(tBuNacnac)MgMg(tBuNacnac)] towards a variety of Lewis bases and unsaturated organic substrates was explored. These studies led to the complexes [(MesNacnac)Mg(L)Mg(L)(MesNacnac)] (L=THF or DMAP), [(MesNacnac)Mg(μ‐AdN6Ad)Mg(MesNacnac)] (Ad=1‐adamantyl), [(tBuNacnac)Mg(μ‐AdN6Ad)Mg(tBuNacnac)], and [(MesNacnac)Mg(μ‐tBu2N2C2O2)Mg(MesNacnac)] and revealed that, in general, the reactivity of the magnesium(I) dimers is inversely proportional to their steric bulk. The preparation and characterization of [(tBuNacnac)Mg(μ‐H)2Mg(tBuNacnac)] has shown the compound to have different structural and physical properties to [(tBuNacnac)MgMg(tBuNacnac)]. Treatment of the former with DMAP has given [(tBuNacnac)Mg(H)(DMAP)], the X‐ray crystal structure of which disclosed it to be the first structurally authenticated terminal magnesium hydride complex. Although attempts to prepare [(MesNacnac)Mg(μ‐H)2Mg(MesNacnac)] were not successful, a neutron diffraction study of the corresponding magnesium(I) complex, [(MesNacnac)MgMg(MesNacnac)] confirmed that the compound is devoid of hydride ligands.  相似文献   

4.
The title compound, tris­[(R)‐2‐hydroxy­propan­amide‐κ2O,O′]­zinc(II) tetra­bromo­zincate, [Zn(C3H7NO2)3][ZnBr4], contains one monomeric six‐coordinate zinc complex cation and one tetrahedral [ZnBr4]2− anion. Both ZnII atoms lie on threefold axes. Coordination in the cation occurs via the amide and hydroxy O atoms [Zn—O = 2.074 (5) and 2.073 (6) Å] and has a distorted octahedral geometry, with cis‐O—Zn—O angles in the range 76.2 (2)–109.2 (2)°. In the crystal structure, the cations and anions are linked by N—H⋯Br and O—H⋯O hydrogen bonds, generating a three‐dimensional network.  相似文献   

5.
Two extremely bulky boryl/silyl-substituted amide ligands, –N{B(DipNCH)2}(SiR3) (R = Me TBoL, R = Ph PhBoL; Dip = 2,6-diisopropylphenyl) were used in the preparation of the group 12 metal halide complexes, PhBoLZnBr, {TBoLCd(μ-I)}2, TBoLHgI, and PhBoLHgI. The reduction of these, and two previously reported compounds, PhBoLZnBr(THF) and {PhBoLCd(μ-I)}2, using a magnesium(I) compound, {(MesNacnac)Mg}2 (MesNacnac = [(MesNCMe)2CH], Mes = mesityl), were carried out, leading to mixed results. In several cases these reactions led to decomposition, and deposition of the group 12 metal. However, in two instances the homobimetallic metal(I) complexes, TBoLM–MTBoL (M = Zn or Hg), were isolated and crystallographically characterized. The reduction of {PhBoLCd(μ-I)}2 afforded the known cadmium(I) complex, PhBoLCd–CdPhBoL, but also gave a very low yield of the thermally unstable complex, PhBoLCd–Mg(THF)(MesNacnac). The X-ray crystal structure of this compound reveals it to contain the first example of a Cd–Mg bond in a molecular compound.  相似文献   

6.
The bottom‐up synthesis of organometallic zinc clusters is described. The cation {[Zn10](Cp*)6Me}+ ( 1 ) is obtained by reacting [Zn2Cp*2] with [FeCp2][BAr4F] in the presence of ZnMe2. In the presence of suitable ligands, the high reactivity of 1 enables the controlled abstraction of single Zn units, providing access to the lower‐nuclearity clusters {[Zn9](Cp*)6} ( 2 ) and {[Zn8](Cp*)5(tBuNC)3}+ ( 3 ). According to DFT calculations, 1 and 2 can be described as closed‐shell species that are electron‐deficient in terms of the Wade–Mingos rules because the apical ZnCp* units that constitute the cluster cage do not have three, but only one, frontier orbitals available for cluster bonding. Zinc behaves flexibly in building the skeletal metal–metal bonds, sometimes providing one major frontier orbital (like Group 11 metals) and sometimes providing three frontier orbitals (like Group 13 elements).  相似文献   

7.
Ligand L (4‐(7‐nitrobenzo[1,2,5]oxadiazole‐4‐yl)‐1,7‐dimethyl‐1,4,7,10‐tetra‐azacyclododecane) is a versatile fluorescent sensor useful for CuII, ZnII and CdII metal detection, as a building block of fluorescent metallo‐receptor for halide detection, and as an organelle marker inside live cells. Ligand L undergoes a chelation‐enhanced fluorescence (CHEF) effect upon metal coordination in acetonitrile solution. In all three complexes investigated the metal cation is coordinatively unsaturated; thus, it can bind secondary ligands as anionic species. The crystal structure of [Zn L Cl](ClO4) is discussed. CuII and ZnII complexes are quenched upon halide interaction, whereas the [Cd L ]2+ species behaves as an OFF–ON sensor for halide anions in acetonitrile solution. The mechanism of the fluorescence response in the presence of the anion depends on the nature of the metal ion employed and has been studied by spectroscopic methods, such as NMR spectroscopy, UV/Vis and fluorescence techniques and by computational methods. Subcellular localization experiments performed on HeLa cells show that L mainly localizes in spot‐like structures in a polarized portion of the cytosol that is occupied by the Golgi apparatus to give a green fluorescence signal.  相似文献   

8.
Despite the explosive growth of germylene compounds as ligands in transition metal complexes, there is a modicum of precedence for the germylene zinc complexes. In this work, the synthesis and characterization of new germylene zinc complexes [PhC(NtBu)2Ge{N(SiMe3)2}→ZnX2]2 (X= Br ( 2 ) and I ( 3 )) supported by (benz)‐amidinato germylene ligands are reported. The solid‐state structures of 2 and 3 have been validated by single‐crystal X‐ray diffraction studies, which revealed the dimeric nature of the complexes, with distorted tetrahedral geometries around the Ge and Zn center. DFT calculations reveal that the Ge–Zn bonds in 2 and 3 are dative in nature. The reaction of 2 with elemental sulfur resulted in the first structurally characterized germathione stabilized ZnBr2 complexes PhC(NtBu)2Ge(=S){N(SiMe3)2}→ZnBr2 ( 5 ). Therefore, the Ge=S in 5 is in‐between Ge–S single and Ge=S double bond length, owing to the coordination of a sulfur lone pair of electrons to ZnBr2.  相似文献   

9.
Two one‐dimensional zinc‐based coordination polymers containing cyanate anions are reported. catena‐Poly[sodium [[tricyanato­zinc(II)]‐μ‐1,4‐diaza­bicyclo­[2.2.2]octane‐κ2N:N′]], {Na[Zn(NCO)3(C6H12N2)]}n, consists of linear [tricyanato­zinc(II)]‐μ‐1,4‐diaza­bicyclo­[2.2.2]octane strands in which the Zn2+ cations adopt trigonal–bipyramidal coordination on sites of m2 point symmetry. Na+ cations lie between the strands on sites of m point symmetry, coordinated in a distorted octa­hedral geometry by six O atoms of the cyanate anions. catena‐Poly[[dicyanato­zinc(II)]‐μ‐4,4′‐bipyridine‐κ2N:N′], [Zn(NCO)2(C10H8N2)]n, crystallizes in the space group P21/n with Z′ = 5. The structure consists of zigzag strands formed by Zn2+ cations linked via 4,4′‐bipyridine. Each Zn2+ cation adopts a tetra­hedral coordination, with two sites occupied by 4,4′‐bipyridine and two cyanate anions completing the coordination sphere. The structure is closely comparable with the thio­cyanate and halide analogues [ZnX2(C10H8N2)] (X = NCS, Cl or Br).  相似文献   

10.
Nine new coordination compounds have been synthesized by the reaction of salts of bivalent metal ions (a=ZnII, b=CuII, c=NiII, d=CoII) with the bis(benzoylhydrazone) derivative of 4,6‐diacetylresorcinol (H4L). Three kinds of complexes have been obtained: homodinuclear compounds [M2(H2L)2]?nH2O ( 1 a , 1 b , 1 c , and 1 d ), homotetranuclear compounds [M4(L)2]?n(solv) ( 2 a and 2 c ), and heterotetranuclear compounds [Zn2M2(L)2]?n(solv) ( 2 ab , 2 ac , and 2 ad ). The structures of the free ligand H4L?2 DMSO and its complexes [Zn2(H2L)2(DMSO)2] ( 1 a* ), [Zn4(L)2(DMSO)6] ( 2 a* ), and [Zn0.45Cu3.55(L)2(DMSO)6]?2 DMSO ( 2 ab* ) were elucidated by single‐crystal X‐ray diffraction. The ligand shows luminescence properties and its fluorimetric behavior towards MII metals (M=Zn, Cu, Ni and Co) has been studied. Furthermore, the solid‐state luminescence properties of the ligand and compounds have been determined at room temperature. 1H NMR spectroscopic monitoring of the reaction of H4L with ZnII showed the deprotonation sequence of the OH/NH groups upon metal coordination. Heteronuclear reactions have also been monitored by using ESI‐MS and spectrofluorimetric techniques.  相似文献   

11.
Treatment of [K(BIPMMesH)] (BIPMMes={C(PPh2NMes)2}2?; Mes=C6H2‐2,4,6‐Me3) with [UCl4(thf)3] (1 equiv) afforded [U(BIPMMesH)(Cl)3(thf)] ( 1 ), which generated [U(BIPMMes)(Cl)2(thf)2] ( 2 ), following treatment with benzyl potassium. Attempts to oxidise 2 resulted in intractable mixtures, ligand scrambling to give [U(BIPMMes)2] or the formation of [U(BIPMMesH)(O)2(Cl)(thf)] ( 3 ). The complex [U(BIPMDipp)(μ‐Cl)4(Li)2(OEt2)(tmeda)] ( 4 ) (BIPMDipp={C(PPh2NDipp)2}2?; Dipp=C6H3‐2,6‐iPr2; tmeda=N,N,N′,N′‐tetramethylethylenediamine) was prepared from [Li2(BIPMDipp)(tmeda)] and [UCl4(thf)3] and, following reflux in toluene, could be isolated as [U(BIPMDipp)(Cl)2(thf)2] ( 5 ). Treatment of 4 with iodine (0.5 equiv) afforded [U(BIPMDipp)(Cl)2(μ‐Cl)2(Li)(thf)2] ( 6 ). Complex 6 resists oxidation, and treating 4 or 5 with N‐oxides gives [{U(BIPMDippH)(O)2‐ (μ‐Cl)2Li(tmeda)] ( 7 ) and [{U(BIPMDippH)(O)2(μ‐Cl)}2] ( 8 ). Treatment of 4 with tBuOLi (3 equiv) and I2 (1 equiv) gives [U(BIPMDipp)(OtBu)3(I)] ( 9 ), which represents an exceptionally rare example of a crystallographically authenticated uranium(VI)–carbon σ bond. Although 9 appears sterically saturated, it decomposes over time to give [U(BIPMDipp)(OtBu)3]. Complex 4 reacts with PhCOtBu and Ph2CO to form [U(BIPMDipp)(μ‐Cl)4(Li)2(tmeda)(OCPhtBu)] ( 10 ) and [U(BIPMDipp)(Cl)(μ‐Cl)2(Li)(tmeda)(OCPh2)] ( 11 ). In contrast, complex 5 does not react with PhCOtBu and Ph2CO, which we attribute to steric blocking. However, complexes 5 and 6 react with PhCHO to afford (DippNPPh2)2C?C(H)Ph ( 12 ). Complex 9 does not react with PhCOtBu, Ph2CO or PhCHO; this is attributed to steric blocking. Theoretical calculations have enabled a qualitative bracketing of the extent of covalency in early‐metal carbenes as a function of metal, oxidation state and the number of phosphanyl substituents, revealing modest covalent contributions to U?C double bonds.  相似文献   

12.
A series of Zn (II), Pd (II) and Cd (II) complexes, [(L) n MX 2 ] m (L = L‐a–L‐c; M = Zn, Pd; X = Cl; M = Cd; X = Br; n, m = 1 or 2), containing 4‐methoxy‐N‐(pyridin‐2‐ylmethylene) aniline ( L‐a ), 4‐methoxy‐N‐(pyridin‐2‐ylmethyl) aniline ( L‐b ) and 4‐methoxy‐N‐methyl‐N‐(pyridin‐2‐ylmethyl) aniline ( L‐c ) have been synthesized and characterized. The X‐ray crystal structures of Pd (II) complexes [L 1 PdCl 2 ] (L = L‐b and L‐c) revealed distorted square planar geometries obtained via coordinative interaction of the nitrogen atoms of pyridine and amine moieties and two chloro ligands. The geometry around Zn (II) center in [(L‐a)ZnCl 2 ] and [(L‐c)ZnCl 2 ] can be best described as distorted tetrahedral, whereas [(L‐b) 2 ZnCl 2 ] and [(L‐b) 2 CdBr 2 ] achieved 6‐coordinated octahedral geometries around Zn and Cd centers through 2‐equivalent ligands, respectively. In addition, a dimeric [(L‐c)Cd(μ ‐ Br)Br] 2 complex exhibited typical 5‐coordinated trigonal bipyramidal geometry around Cd center. The polymerization of methyl methacrylate in the presence of modified methylaluminoxane was evaluated by all the synthesized complexes at 60°C. Among these complexes, [(L‐b)PdCl 2 ] showed the highest catalytic activity [3.80 × 104 g poly (methyl methacrylate) (PMMA)/mol Pd hr?1], yielding high molecular weight (9.12 × 105 g mol?1) PMMA. Syndio‐enriched PMMA (characterized using 1H‐NMR spectroscopy) of about 0.68 was obtained with Tg in the range 120–128°C. Unlike imine and amine moieties, the introduction of N‐methyl moiety has an adverse effect on the catalytic activity, but the syndiotacticity remained unaffected.  相似文献   

13.
Alkane elimination reactions of the tethered bis(urea) proligand 1,4‐(tBuNHCONH)2‐C4H8 ( 1 ) with ZnR2 (R = Me, Et, nPr) yielded trimetallic zinc complexes [RZn‐1,4‐(tBuNHCON)2‐C4H8]2Zn [R = Me ( 2 ), Et ( 3 ), and nPr ( 4 )]. 2 – 4 were characterized by heteronuclear NMR (1H, 13C) and IR spectroscopy, elemental analysis, and single‐crystal X‐ray diffraction.  相似文献   

14.
Dizinc(II) complexes of two acyclic Schiff‐base ligands L1 and L2 were synthesized by Schiff base condensation of 2‐[3‐(2‐formylphenoxy)‐2‐hydroxypropoxy]benzaldehyde ( PL ) with 1,2‐diaminopropane and 1,2‐diaminoethane, respectively, in the presence of zinc(II) salts. The isolation of a selection of 2:1 (metal:ligand) complexes of zinc(II) was carried out and conductance measurements, IR, UV/Vis absorption, and fluorescence emission spectroscopy, as well as X‐ray diffraction were employed to probe the nature of the respective complexes in both solid and solution states. The molecular structure of [Zn2 L1 (NO3)3] ( 1 ) complex consists of two six‐coordinate atoms, which are bridged by the deprotonated hydroxy group and one 1,3‐bridging nitrate anion. The structure of [Zn2 L2 (NO3)(H2O)2](NO3)2 · CH3OH ( 3 ) consists of a dizinc cation and two nitrate anions as counterions. In compound 3 , each zinc atom is bound to water instead of a terminal nitrate anion in a distorted octahedral arrangement. The intermetallic separation distance of Zn ··· Zn in 3 (3.376 Å) is slightly smaller than 1 (3.403 Å) and is similar to that found in zinc phosphotriesterase (3.5 Å). The π–π interactions between the benzene rings of adjacent molecules in 3 are stronger than in 1 .  相似文献   

15.
Reaction of group 12 metal dihalides with 2‐acetylpyridine‐N‐oxide 4N‐methylthiosemicarbazone (H4MLO) in ethanol afforded compounds [M(H4MLO)X2] (M = ZnII, CdII, HgII; X = Cl, Br, I), the structures of which were characterized by elemental analysis and by IR and 1H and 13C NMR spectroscopy. In addition, the complexes of ZnBr2 and ZnI2 were analysed structurally by X‐ray diffractometry. In [Zn(H4MLO)Br2] the ligand is O,N,S‐tridentate and the metal is pentacoordinated, while in [Zn(H4MLO)I2] the thiosemicarbazone is S,O‐bis‐monodentate and the ZnII cation has a distorted tetrahedral coordination polyhedron. In assays of antifungal activity against Aspergillus niger and Paecilomyces variotii, only the mercury compounds showed any activity, and only [Hg(H4MLO)Cl2] and [Hg(H4MLO)I2] were competitive with nystatin against A. niger.  相似文献   

16.
X-Ray Structure of [Li(tmeda)2][Zn(2,4,6- i Pr3C6H2)3] A side reaction of zinc halide containing VCl2(tmeda)2 and Li(2,4,6-iPr3C6H2) formed [Li(tmeda)2][Zn(2,4,6-iPr3C6H2)3] · 0,5[(tmeda)Li(μ-Cl)]2. The crystal structure (orthorhombic, Pbca, a = 26,226(2), b = 19,739(2), c = 27,223(5) Å, Z = 8, R = 0,062, wR2 = 0,154) contains trigonal planar zinc anions with Zn–C distances of 2,039(7) Å (average) and a propeller like arrangement of the aryl rings.  相似文献   

17.
The new synthesized ligand (DADMBTZ = 2,2′‐diamino‐5,5′‐dimethyl‐4,4′‐bithiazole), which is mentioned in this text, is used for preparing the two new complexes [Zn(DADMBTZ)3](ClO4)2. 0.8MeOH.0.2H2O ( 1 ) and [Cd(DADMBTZ)3](ClO4)2 ( 2 ). The characterization was done by IR, 1H, 13C NMR spectroscopy, elemental analysis and single crystal X‐ray determination. In reaction with DADMBTZ, zinc(II) and cadmium(II) show different characterization. In 2 , to form a tris‐chelate complex with nearly C3 symmetry for coordination polyhedron, DADMBTZ acts as a bidentate ligand. In 1 , this difference maybe relevant to small radii of Zn2+ which make one of the DADMBTZ ligands act as a monodentate ligand to form the five coordinated Zn2+ complex. In both 1 and 2 complexes the anions are symmetrically different. 1 and 2 complexes form 2‐D and 3‐D networks via N‐H···O and N‐H···N hydrogen bonds, respectively.  相似文献   

18.
The N‐heterocyclic carbene (NHC) adducts Zn(CpR)2(NHC)] (CpR=C5HMe4, C5H4SiMe3; NHC=ItBu, IDipp (Dipp=2,6‐diisopropylphenyl), IMes (Mes=mesityl), SIMes) were prepared and shown to be active catalysts for the hydrogenation of imines, whereas decamethylzincocene [ZnCp*2] is highly active for the hydrogenation of ketones in the presence of noncoordinating NHCs. The abnormal carbene complex [Zn(OCHPh2)2(aItBu)]2 was formed from spontaneous rearrangement of the ItBu ligand during incomplete hydrogenation of benzophenone. Two isolated ZnI adducts [Zn2Cp*2(NHC)] (NHC=ItBu, SIMes) are presented and characterized as weak adducts on the basis of 13C NMR spectroscopic and X‐ray diffraction experiments. A mechanistic proposal for the reduction of [ZnCp*2] with H2 to give [Zn2Cp*2] is discussed.  相似文献   

19.
Sodium in dry methanol reduces 2‐cyanopyridine in the presence of 3‐piperidylthiosemicarbazide and produces 2‐pyridine‐formamide‐3‐piperidylthiosemicarbazone, HAmpip. Complexes with zinc(II), cadmium(II), and mercury(II) have been prepared and characterized by elemental analyses and spectroscopic techniques. In addition, the crystal structures of [Zn(Ampip)2], [Zn(Ampip)(Oac)]2, [Cd(HAmpip)Cl2]·(CH3)2SO, [Cd(HAm‐pip)Br2] · (CH3)2SO, [Cd(HAmpip)I2]·(CH3)2SO, [Cd(Ampip)2] and [Hg(HAmpip)Br2]·(CH3)2SO have been solved. Coordination of the anionic and neutral thiosemicarbazone ligand is via the pyridyl nitrogen, imine nitrogen and thiolato/thione sulfur atom, respectively. In [Zn(Ampip)(OAc)]2 one of the bridging acetato ligands has monodentate coordination and the other bridges in a bidentate manner. 113Cd NMR studies were carried out on the [Cd(HAmpip)X2](X = Cl, Br or I) and [Cd(Ampip)(OAc)]2 complexes. The 113Cd chemical shifts are affected by the halogen and range from 411 to 301 ppm, and the spectrum of [Cd(Ampip)(OAc)]2 shows two signals at 450 and 251 ppm. The 199Hg NMR spectrum of [Hg(HAmpip)Cl2] also is discussed.  相似文献   

20.
Two new open‐framework zincophosphites, Zn(H6C4N2S)(HPO3) (TJPU‐4) and [C6N2H14]·[Zn3(HPO3)4] (TJPU‐5) have been hydrothermally synthesized by using 2‐mercapto‐1‐methylimidazole [MMI] and 1,4‐diazabicyclo[2.2.2]octane [DABCO] as templates. TJPU‐4 crystallizes in monoclinic space group P21/c with the cell parameters a = 8.787(4) Å, b = 9.732(4) Å, c = 10.515(4) Å, β = 105.316(6)°, V = 867.3(6) Å3. The structure of TJPU‐4 is constructed by ZnO3S tetrahedron and HPO3 pseudo‐pyramid to generate a layer of 4, 8‐network in bc plane. The organic template locates on the both sides of the 8‐membered rings and bonds to zinc atom through Zn–S bond. TJPU‐5 crystallizes in the triclinic space group with cell parameters a = 9.294 (5) Å, b = 9.976 (5) Å, c = 9.986 (5) Å, α = 85.692 (7)°, β = 82.010 (7)° and γ = 80.184 (7)°, V = 902.1 (8) Å3. A novel 4488 cage is found in TJPU‐5. The connections of Zn(1)O4, Zn(3)O4 and HPO3 groups give rise to an infinite corner‐shared four‐ring chain. Using Zn(2)O4 as four connected bridges, linkages of these chains produce a 3‐D framework with intersecting 8‐ring channels running along [100], [010], [001], [011] and [111] directions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号