首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Chemically functionalized gas-filled bubbles with a versatile micro/nano-sized scale have witnessed a long history of developments and emerging applications in disease diagnosis and treatments. In combination with ultrasound and image-guidance,micro/nanobubbles have been endowed with the capabilities of biomedical imaging, drug delivery, gene transfection and diseaseoriented therapy. As an external stimulus, ultrasound(US)-mediated targeting treatments have been achieving unprecedented efficiency. Nowadays, US is playing a crucial role in visualizing biological/pathological changes in lives as a reliable imaging technique and a powerful therapeutic tool. This review retrospects the history of ultrasound, the chemistry of functionalized agents and summarizes recent advancements of functional micro/nanobubbles as US contrast agents in preclinical and transclinical research. Latest ultrasound-based treatment modalities in association with functional micro/nanobubbles have been highlighted as their great potentials for disease precision therapy. It is believed that these state-of-the-art micro/nanobubbles will become a booster for ultrasound medicine and visualizable guidance to serve future human healthcare in a more comprehensive and practical manner.  相似文献   

2.
《中国化学快报》2020,31(9):2442-2446
Nanobubble is a rising research field, which attracts more and more attentions due to its potential applications in medical science, catalysis, electrochemistry and etc. To better implement these applications, it is urgent to understand one of the most important mechanisms of nanobubbles, the evolution. However, few attentions have been paid in this aspect because of the methodology difficulties. Here we successfully used dark-field microscopy to study the evolution process of single nanobubbles generated from formic acid dehydrogenation on single Pd-Ag nanoplates. We found some of the nanobubbles in this system can exhibit three distinct states representing different sizes, which can transform among each other. These transitions are not direct but through some intermediate states. Further kinetic analysis reveals complicated mechanisms behind the evolution of single nanobubbles. The results acquired from this study can be applicable to nanobubble systems in general and provide insights into the understanding of mechanisms affecting the stability of nanobubbles and their applications.  相似文献   

3.
Electrochemically controlled formation and growth of hydrogen nanobubbles   总被引:2,自引:0,他引:2  
Electrogenerated microscale bubbles that are confined at the electrode surface have already been extensively studied because of their significant influence on electrochemistry. In contrast, as far as we know, whether nanoscale bubbles exist on the electrode surface has not been experimentally confirmed yet. Here, we report the observation of electrochemically controlled formation and growth of hydrogen nanobubbles on bare highly oriented pyrolytic graphite (HOPG) surface via in-situ tapping mode atomic force microscopy (TMAFM). By using TMAFM imaging, we observed that electrochemically generated hydrogen gas led to the formation of nanobubbles at the HOPG surface. We then employed a combination of techniques, including phase imaging, ex-situ degassing, and tip perturbation, to confirm the gas origin of such observed nanobubbles. We further demonstrated that the formation and growth of nanobubbles could be well controlled by tuning either the applied voltage or the reaction time. Remarkably, we could also monitor the evolution process of nanobubbles, that is, formation, growth, coalescence, as well as the eventual release of merged microbubbles from the HOPG surface.  相似文献   

4.
The field of medical ultrasound has undergone a significant evolution since the development of microbubbles as contrast agents. However, because of their size, microbubbles remain in the vasculature and therefore have limited clinical applications. Building a better—and smaller—bubble can expand the applications of contrast-enhanced ultrasound by allowing bubbles to extravasate from blood vessels—creating new opportunities. In this review, we summarize recent research on the formulation and use of nanobubbles (NBs) as imaging agents and as therapeutic vehicles. We discuss the ongoing debates in the field and reluctance to accepting NBs as an acoustically active construct and a potentially impactful clinical tool that can help shape the future of medical ultrasound. We hope that the overview of key experimental and theoretical findings in the NB field presented in this article provides a fundamental framework that will help clarify NB–ultrasound interactions and inspire engagement in the field.  相似文献   

5.
High-intensity ultrasound induces emulsification and cross-linking of protein molecules in aqueous medium. The stability and the functionality of the resultant protein-coated microbubbles are crucial in many of their applications. For example, the stability of drug-loaded microbubbles should be sufficiently long enough, in vivo, so that they can be ruptured only at specific sites for release of the drugs. In this study, we report the synthesis of stable and functional microbubbles, coated with chemically reduced lysozyme, using high-intensity ultrasound in aqueous solution. In the absence of chemical reduction, stable microbubbles were not produced with native lysozyme, indicating the importance of free -SH functional groups for protein cross-linking. The degree of cross-linking between lysozyme molecules was controlled by manipulating both the extent of chemical reduction of the intramolecular disulfide bonds and sonication time. The lysozyme-coated microbubbles are stable for several months and retain the enzymatic (antimicrobial) activity of lysozyme. The layer-by-layer (LbL) deposition of polyelectrolytes onto the protein-shell air-core template has been used as a versatile procedure to modify the surface properties of the microbubbles, indicating the possibility of adsorbing potential drugs and/or biolabels on the surface of these microbubbles for therapeutic and diagnostic applications.  相似文献   

6.
Comparison of the fluorescence intensity caused by the accumulation of PpIX in endometrial cancer xenografts in nude mice after low‐dose 5‐Aminolevulinic acid (ALA) injection combined with siRNA transfection was mediated by ultrasound microbubbles and polyethyleneimine (PEI) to explore the feasibility of the ultrasound microbubble technique as transfection agents. Knockdown of ferrochelatase (FECH) in human endometrial cancer xenografts in nude mice was performed by transfection with FECH‐siRNA mediated by PEI and ultrasound microbubbles alone or in combination; then, low‐dose ALA was injected. Subsequently, an in vivo animal imaging system was employed to detect the fluorescence intensity in xenografts. Red fluorescence was observed in xenografts given more than 6.25 mg kg?1 of ALA. When the dose of ALA was greater than 50 mg kg?1, there was a significant difference in the fluorescence between tumor and other tissues. After the nude mice were transfected with siRNA and treated with low‐dose ALA (1.0 mg kg?1), apparent PpIX fluorescence of the xenografts was observed, and the fluorescence intensity was PEI+ ultrasound microbubbles > PEI > ultrasound microbubbles. Ultrasound microbubbles in combination with PEI could generate a higher fluorescence intensity of PpIX than that obtained with ultrasound microbubbles or PEI alone, and ultrasound microbubbles could wholly or partially replace PEI under certain conditions.  相似文献   

7.
Nanobubbles are expected to dissolve in milliseconds. Experimental evidence of nanobubbles that were stable for days had thus been first received with circumspection. If the large number of experimental confirmations has now made clear that surface nanobubbles could exist, bulk nanobubbles are still subject to debate. When observations are reported, the main problem is to make sure the observed particles are really made of gas. We show that ultrasound is an ideal tool for investigating the existence of bulk nanobubbles: 1) it is sensitive to minute quantities of gas, 2) it allows one to determine the bubble size distribution, 3) it discriminates unambiguously between gaseous and solid/liquid inclusions. To illustrate the efficiency of ultrasonic detection, we performed size measurements of bubbles produced by a commercial nano‐/microbubble generator. No nanobubble was detected with this device. It would be insightful to use ultrasonic detection in experimental situations for which stable nanobubbles were reported.  相似文献   

8.
李大勇  王伟杰  赵学增 《化学进展》2012,24(8):1447-1455
固液界面纳米气泡是近十年来表面科学的重要发现之一。从利用原子力显微镜(AFM)在固液界面上观察到纳米气泡以来,科学工作者们已经证实了纳米气泡在固液界面上存在。由于其在微机电系统(MEMS)、微生化系统、表面科学、流体动力学等领域潜在的应用价值,各国学者们对纳米气泡的自身性质及影响因素已经开展了多方面的研究。但纳米气泡稳定性(反常的长寿)的原因仍然是未解决的问题之一。本文综述了纳米气泡的形成及影响因素,重点评述了纳米气泡稳定性理论,包括线张力理论、动态平衡理论、杂质理论和克努森气体理论等。同时,介绍了固液界面纳米气泡的应用,并展望了未来研究的重点和方向。  相似文献   

9.
Targeted ultrasound contrast agents can be prepared by some specific bioconjugation techniques. The biotin-avidin complex is an extremely useful noncovalent binding system, but the system might induce immunogenic side effects in human bodies. Previous proposed covalently conjugated systems suffered from low conjugation efficiency and complex procedures. In this study, we propose a covalently conjugated nanobubble coupling with nucleic acid ligands, aptamers, for providing a higher specific affinity for ultrasound targeting studies. The sgc8c aptamer was linked with nanobubbles through thiol-maleimide coupling chemistry for specific targeting to CCRF-CEM cells. Further improvements to reduce the required time and avoid the degradation of nanobubbles during conjugation procedures were also made. Several investigations were used to discuss the performance and consistency of the prepared nanobubbles, such as size distribution, conjugation efficiency analysis, and flow cytometry assay. Further, we applied our conjugated nanobubbles to ex vivo ultrasound targeted imaging and compared the resulting images with optical images. The results indicated the availability of aptamer-conjugated nanobubbles in targeted ultrasound imaging and the practicability of using a highly sensitive ultrasound system in noninvasive biological research.  相似文献   

10.
The dynamic processes impacting the size distributions of lipid-encapsulated microbubbles formed by flow-focusing were observed by video optical microscopy. Parameters studied included the filling gas, gas saturating the surrounding solution, and microbubble size (initial size 2-12 microm) to simulate typical laboratory conditions. Typically, dissolution or growth, followed by Ostwald ripening at a collection cover glass, were observed and quantified. However, in the case of small nitrogen-filled microbubbles surrounded by an air-saturated solution, Ostwald ripening was avoided for at least 9 h. These bubbles had a final size distribution of 1.5 +/- 0.1 microm. This work suggests that lipid-encapsulated microbubbles formed by flow-focusing should be given sufficient time to reach a terminal size before coming into contact with each other. These long-lived mondisperse microbubbles should be of interest in ultrasound contrast agents, microfabrication, food, and research applications.  相似文献   

11.
12.
Recently, a new type of ultrasound contrast agent that consists of air‐filled microbubbles stabilized with a shell of polyvinyl alcohol was developed. When superparamagnetic nanoparticles of iron oxide are incorporated in the polymer shell, a multimodal contrast agent can be obtained. The biodistribution and elimination pathways of the polyvinyl alcohol microbubbles are essential to investigate, which is limited with today's techniques. The aim of the present study was, therefore, to develop a method for qualitative and quantitative analysis of microbubbles in biological samples using capillary electrophoresis with ultraviolet detection. The analysis parameters were optimized to a wavelength at 260 nm and pH of the background electrolyte ranging between 11.9 and 12. Studies with high‐intensity ultrasonication degraded microbubbles in water showed that degraded products and intact microbubbles could be distinguished, thus it was possible to quantify the intact microbubbles solely. Analysis of human blood plasma spiked with either plain microbubbles or microbubbles with nanoparticles demonstrated that it is possible to separate them from biological components like proteins in these kinds of samples.  相似文献   

13.
Phase change contrast agents (PCCAs) have been studied in the medical ultrasound field for nearly three decades. Their ability to convert from a liquid core droplet to an acoustically active microbubble has enhanced the possibilities of medical ultrasound, enabling new imaging approaches as well as therapeutic directions. However, traditional PCCAs are formulated with perfluorocarbons which are a liquid at standard temperature and pressure, requiring a high amount of energy to transition the encapsulated droplets to gas form, possibly resulting in undesired bioeffects. A new generation of low-boiling point PCCAs, which are formulated from gaseous perfluorocarbons in a metastable liquid state, seeks to overcome these limits. These super-heated liquid perfluorocarbon nanodroplets display longer circulation kinetics than microbubbles, their activation produces unique acoustic signatures, and their small particle size holds potential for extravascular applications. Low-boiling point nanodroplets can be phase-transitioned when activated with ultrasound at pressures and frequencies approved for diagnostic imaging. From the first publication almost 10 years ago, low-boiling point PCCA research has expanded rapidly, and recent advances in super-resolution imaging, drug delivery and neuromodulation made possible by these nanodroplets are just a few examples of this growing field of research. In this review, we discuss low-boiling point phase change contrast agents and their applications in ultrasound imaging and therapeutics.  相似文献   

14.
Gas saturated solutions have attracted great attention in the past two decades with reports of stable nanobubbles in solutions. The fundamental interest focus arises from the surprising stability which opens up a wide range of potential applications where the interactions between particles and nanobubbles are important. Here, we review the current state of knowledge on systems involving both nanobubbles and nanoparticles. As nanoparticles and nanobubbles are found together in many circumstances, particularly those involving applications of nanobubbles, knowledge of these systems is important. This includes examining the formation of nanoparticles from nanobubbles, the nucleation of nanobubbles from nanoparticles, and the interactions between nanobubbles and nanoparticles. It is clear that further work is required to more fully understand these systems, in particular on the problem of nanobubble nucleation and nanobubble–nanoparticle interactions at the submicron scale.  相似文献   

15.
Microbubbles used as contrast agents for ultrasound imaging, vectors for targeted drug delivery and vehicles for metabolic gas transport require better size control for improved performance. Mechanical agitation is the only method currently available to produce microbubbles in sufficient yields for biomedical applications, but the emulsions tend to be polydisperse. Herein, we describe a study to generate lipid-coated, perfluorobutane-filled microbubbles and isolate their size fractions based on migration in a centrifugal field. Polydispersity of the freshly sonicated suspension was characterized by particle sizing and counting through light obscuration/scattering and electrical impedance sensing, fluorescence and bright-field microscopy and flow cytometry. We found that the size distribution was multimodal. Smaller microbubbles were more abundant. Differential centrifugation was used to successfully isolate the 1-2 and 4-5 mum diameter fractions. Isolated microbubbles were stable over two days. After two weeks, however, more dilute suspensions (<1 vol%) were susceptible to Ostwald ripening. For example, 4-5 mum microbubbles disintegrated into 1-2 mum microbubbles. This latter observation indicated the existence of an optimally stable diameter in the 1-2 mum range for these lipid-coated microbubbles. Overall, differential centrifugation provided a rapid and robust means for size selection and reduced polydispersity of lipid-coated microbubbles.  相似文献   

16.
Ultrasonography is an important complement to clinical diagnosis, and the application of microbubbles effectively improved diagnostic accuracy in echography. In scientific research, the sizes of microbubbles range from nanometers to microns. By optimizing the fabrication process, bubble sizes and ultrasound parameters, microbubbles can also be used for drug delivery and therapeutic monitoring. In this review,we summarize the recent advances in the diagnosis and treatment of microbubbles accordin...  相似文献   

17.
Metabolic sugar labeling followed by the use of reagent‐free click chemistry is an established technique for in vitro cell targeting. However, selective metabolic labeling of the target tissues in vivo remains a challenge to overcome, which has prohibited the use of this technique for targeted in vivo applications. Herein, we report the use of targeted ultrasound pulses to induce the release of tetraacetyl N‐azidoacetylmannosamine (Ac4ManAz) from microbubbles (MBs) and its metabolic expression in the cancer area. Ac4ManAz‐loaded MBs showed great stability under physiological conditions, but rapidly collapsed in the presence of tumor‐localized ultrasound pulses. The released Ac4ManAz from MBs was able to label 4T1 tumor cells with azido groups and significantly improved the tumor accumulation of dibenzocyclooctyne (DBCO)‐Cy5 by subsequent click chemistry. We demonstrated for the first time that Ac4ManAz‐loaded MBs coupled with the use of targeted ultrasound could be a simple but powerful tool for in vivo cancer‐selective labeling and targeted cancer therapies.  相似文献   

18.
Bulk nanobubbles (BNBs) are submicron gaseous domains dispersed in solutions, which are supposed to survive for several hours or even days. In recent years, there has been a rapid growth in the research and extraordinary applications of BNBs. Conventional theories based on gas diffusion and Laplace pressure, however, predicted that nanoscale gas bubbles in water should dissolve within microseconds, presenting a modern-day paradox in current nanobubbles researches. Also, it is still challenging to efficiently produce BNBs and determine their gaseous nature with the available techniques. In this review, we start from a general introduction and brief history of nanobubbles researches and revisit the current progress on the generation methods and detection techniques. Two possible formation mechanisms are suggested, and the plausibility of the proposed theories on BNBs stability is discussed with some suggestions for future studies on bulk nanobubbles.  相似文献   

19.
Gas filled hollow microparticles, i.e., microbubbles and microballoons, are soft matter devices used in a number of diverse applications ranging from protein separation and purification in food science to drilling technology and ultrasound imaging. Aqueous dispersions of these mesoscopic systems are characterized by the stabilization of the air/water interface by a thin shell of phospholipid bilayer or multilayers or by a denatured and cross-linked proteic matrix. We present a study of a type of microballoons based on modified poly(vinyl alcohol), PVA, a synthetic biocompatible polymer, with new structural features. A cross-linking reaction carried out at the air/water interface provides polymeric air-filled microbubbles with average dimensions depending on the reaction temperature. Characterization of diameters and shell thicknesses for microbubbles obtained at different temperatures has been carried out. Conversion to solvent-filled hollow microcapsules is possible by soaking microbubbles in dimethyl sulfoxide. Microcapsules permeability to fluorescent labeled dextran molecular weight standards was correlated to the mesh size of the polymer network of the shell. Microbubbles were covalently grafted under very mild conditions with beta-cyclodextrin and poly-l-lysine with a view to assay the capability of the device for delivery of hydrophobic drugs or DNA. PVA based microballoons show a remarkable shelf life of several months, their external surface can be decorated with many biologically relevant molecules. These features, together with a tested biocompatibility, make them attractive candidates for use as multifunctional device for diagnosis and therapeutic purposes, i.e., as ultrasound reflectors in ecographic investigation and as drug platforms for in situ sonoporation.  相似文献   

20.
In the presence of a vascular thrombus, the recovery of blood flow and vascular recanalization are very important to prevent tissue damage. An alternative procedure to thrombolysis is required for patients who are unable to receive surgery or thrombolytic drugs due to other physical conditions. Recently, the performance of thrombolysis combined with microbubbles has become an attractive and effective therapeutic procedure. Indeed, in a recent study, we demonstrated that, upon exposure to ultrasound, liposomes loaded with nitric oxide release agonists conjugated to microbubbles; therefore, there is potential to release the agonist in a controlled manner into specific tissues. This means that the effect of the agonist is potentiated, decreasing interactions with other tissues, and reducing the dose required to induce nitric-oxide-dependent vasodilation. In the present study, we hypothesized that a liposome microbubble delivery system can be used as a hydrophilic agonist carrier for the nitric oxide donor spermine NONOate, to elicit femoral vasodilation and clot degradation. Therefore, we used spermine-NONOate-loaded microbubbles to evaluate the effect of ultrasound-mediated microbubble disruption (UMMD) on thromboembolic femoral artery recanalization. We prepared spermine NONOate-loaded microbubbles and tested their effect on ex vivo preparations, hypothesizing that ultrasound-induced microbubble disruption is associated with the vasorelaxation of aortic rings. Thrombolysis was demonstrated in aorta blood-flow recovery after disruption by spermine NONOate-loaded microbubbles via ultrasound application in the region where the thrombus is located. Our study provides an option for the clinical translation of NO donors to therapeutic applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号