首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hybridization of organometallic complexes with graphene‐based materials can give rise to enhanced catalytic performance. Understanding the chemical structures within hybrid materials is of primary importance. In this work, archetypical hybrid materials are synthesized by the reaction of an organometallic complex, [CoII(acac)2] (acac=acetylacetonate), with N‐doped graphene‐based materials at room temperature. Experimental characterization of the hybrid materials and theoretical calculations reveal that the organometallic cobalt‐containing species is coordinated to heterocyclic groups in N‐doped graphene as well as to its parental acac ligands. The hybrid material shows high electrocatalytic activity for the oxygen reduction reaction (ORR) in alkaline media, and superior durability and methanol tolerance to a Pt/C catalyst. Based on the chemical structures and ORR experiments, the catalytically active species is identified as a Co‐O4‐N structure.  相似文献   

2.
Mixed oxides CoxAlyO4 with different Al/Co ratios applied as supports for the catalysts of the Fischer-Tropsch synthesis were prepared using the solid-state chemical reaction. The CoxAlyO4 supports were prepared by modifying gibbsite with various cobalt salts (acetate, nitrate, and basic carbonate). The use of basic cobalt carbonate gives the Co(20%)/CoxAlyO4 catalyst, which provides an increased yield of hydrocarbons C5+ and a decreased methane content compared to the impregnation catalyst Co(30%)/Al2O3. The introduction of small amounts of rhenium additives makes it possible to enhance the yield of hydrocarbons C5+ (179 g m−3) and also to increase the selectivity with respect to the C5–C18 fraction. The introduction of basic cobalt carbonate into the support, most likely, creates favorable conditions for the epitaxial growth of the precursor of the active phase. Dedicated to Academician G. A. Abakumov on the occasion of his 70th birthday. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1856–1860, September, 2007.  相似文献   

3.
Liquid phase hydrogenolysis of ethyl lactate to 1,2‐propanediol was performed over silica supporting cobalt catalysts prepared by two different methods: precipitation‐gel (PG) technique and deposition‐precipitation (DP) procedure. The cobalt species (Co3O4/cobalt phyllosilicate) present in the corresponding calcined PG and DP catalysts were different as a consequence of the preparation methods, and Co OH Co olation and Si O Co oxolation molecular mechanisms were employed to elucidate the chemical phenomena during the different preparation procedures. In addition, the texture (BET), reduction behavior (TPR and in‐situ XRD), surface dispersion and state of cobalt species (XPS), and catalytic performance differ greatly between the samples. Because of small particle size, high dispersion of cobalt species and facile reducibility, the Co/SiO2 catalyst prepared by precipitation‐gel method presented a much higher activity than the catalyst prepared by deposition‐precipitation method. Metallic cobalt is assumed to be the catalytically active site for the hydrogenolysis reaction according to the catalytic results of both cobalt samples reduced at different temperatures and the structure changes after reaction.  相似文献   

4.
《中国化学快报》2023,34(7):107810
Co3O4 has been widely explored in electrocatalytic 5-hydroxymethyl-furfural (HMF) oxidation. However, the poor intrinsic ability has seriously limited its electrochemical ability. Heteroatom-doping is an efficient method to enhance the electrocatalytic ability of catalyst by regulating electronic structure. Herein, we have modulated the electronic structure of Co3O4 by high valance Mo6+-doping. With the introduction of Mo6+, the content of Co2+ was increased and metal-oxygen bond was strength. Electrochemical results suggested that the electrocatalytic ability of Co3O4 towards HMF oxidation has been dramatically improved and reaction kinetics has been fasten. Theoretical calculations demonstrated that the surrounding cobalt sites after Mo6+-doping with assembled electron has a strong adsorption ability towards HMF molecule leading to more favourable oxidation of HMF. Post characterizations demonstrated pristine Co3O4 structure was kept after electrolysis cycles and CoOOH active species were formed. This work provides a valuable reference for developing efficient heteroatom-doped electrocatalysts for HMF oxidation.  相似文献   

5.
Metal–organic framework (MOF)‐derived Co‐N‐C catalysts with isolated single cobalt atoms have been synthesized and compared with cobalt nanoparticles for formic acid dehydrogenation. The atomically dispersed Co‐N‐C catalyst achieves superior activity, better acid resistance, and improved long‐term stability compared with nanoparticles synthesized by a similar route. High‐angle annular dark‐field–scanning transmission electron microscopy, X‐ray photoelectron spectroscopy, electron paramagnetic resonance, and X‐ray absorption fine structure characterizations reveal the formation of CoIINx centers as active sites. The optimal low‐cost catalyst is a promising candidate for liquid H2 generation.  相似文献   

6.
Poly[triaqua‐μ4‐fumarato‐cobalt(II)], [Co(C4H2O4)(H2O)3]n, (I), contains two symmetry‐independent octahedrally coordinated Co2+ ions, both on inversion centers. One Co2+ ion is coordinated by two water molecules and four fumarate dianions, whereas the other Co2+ ion is surrounded by four water molecules and two fumarate dianions. Each fumarate dianion is bonded to three Co2+ ions, leading to a two‐dimensional structure. The fumarate dianions are nonplanar; the angle between the planes of the two carboxylate groups is 54.9 (2)°. The cobalt(II) fumarate layers are connected by hydrogen bonding into a three‐dimensional network. Compound (I) is not isostructural with calcium(II) fumarate trihydrate [Gupta et al. (1972). Acta Cryst. B 28 , 135–139]. In poly[μ4‐fumarato‐dimethanolcobalt(II)], [Co(C4H2O4)(CH4O)2]n, (II), the Co2+ ions are octahedrally coordinated by four fumarate dianions and two methanol molecules, leading to a three‐dimensional structure. The fumarate group is planar. The Co2+ ions and the fumarate dianions both lie on inversion centers. Additionally, the one‐dimensional structure of catena‐poly[[[tetraaquacobalt(II)]‐μ2‐fumarato] monohydrate], {[Co(C4H2O4)(H2O)4]·H2O}n, (III), was redetermined at a higher resolution, and the space group C2/c was confirmed.  相似文献   

7.
Transition-metal-based oxyhydroxides are efficient catalysts in biomass electrooxidation towards fossil-fuel-free production of valuable chemicals. However, identification of active sites remains elusive. Herein, using cobalt oxyhydroxide (CoOOH) as the archetype and the electrocatalyzed glucose oxidation reaction (GOR) as the model reaction, we track dynamic transformation of the electronic and atomic structure of the catalyst using a suite of operando and ex situ techniques. We reveal that two types of reducible Co3+-oxo species are afforded for the GOR, including adsorbed hydroxyl on Co3+ ion (μ1-OH−Co3+) and di-Co3+-bridged lattice oxygen (μ2-O−Co3+). Moreover, theoretical calculations unveil that μ1-OH−Co3+ is responsible for oxygenation, while μ2-O−Co3+ mainly contributes to dehydrogenation, both as key oxidative steps in glucose-to-formate transformation. This work provides a framework for mechanistic understanding of the complex near-surface chemistry of metal oxyhydroxides in biomass electrorefining.  相似文献   

8.
A general epoxidation of aromatic and aliphatic olefins has been developed under mild conditions using heterogeneous CoxOy–N/C (x=1,3; y=1,4) catalysts and tert‐butyl hydroperoxide as the terminal oxidant. Various stilbenes and aliphatic alkenes, including renewable olefins, and vitamin and cholesterol derivatives, were successfully transformed into the corresponding epoxides with high selectivity and often good yields. The cobalt oxide catalyst can be recycled up to five times without significant loss of activity or change in structure. Characterization of the catalyst by XRD, TEM, XPS, and EPR analysis revealed the formation of cobalt oxide nanoparticles with varying size (Co3O4 with some CoO) and very few large particles with a metallic Co core and an oxidic shell. During the pyrolysis process the nitrogen ligand forms graphene‐type layers, in which selected carbon atoms are substituted by nitrogen.  相似文献   

9.
The surface cobalt concentration in the powder bimetallic Ni-Co catalysts (ratio Co/Ni ≈ 0.25) was shown by X-ray photoelectron spectroscopy to be 2–4 times that of the volume content. Both Ni and Co exist in mixed valent states, viz., M0 and M2+, even after catalyst reduction. After ethyl acetoacetate hydrogenation, the cobalt content on the surface increases 16 times compared to that in the bulk. In addition, the metals are partially oxidized, and the amount of Ni0 and Co0 in the surface layers of the catalyst decreases 2–3 times. It was assumed that the increase in the cobalt content indicates an increase in the amount of cobalt complexes that involve the modifier, substrate, and reaction product, and which shield the nickel active sites. As a result, the enantioface differentiating ability of the catalyst decreases. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 11, pp. 2265–2268, November, 2007.  相似文献   

10.
采用多种物理化学手段研究了在模拟的轻型柴油车尾气中不同Co担载量及Cu掺杂的Co/ZSM-5催化剂的Co组分分散状态、可还原性、NO吸附脱附性质对C3H8选择性催化还原NOx性能的影响。结果表明,浸渍法制备的Co/ZSM-5催化剂上既有外表面上的Co3+和Co2+物种,也有孔内的Co2+离子。富氧条件下Co/ZSM-5催化剂上C3H8选择性催化还原NOx的活性主要与ZSM-5载体孔外表面分散的CoOx物种中的钴离子可还原能力和NO吸附脱附性能密切相关。Co/ZSM-5催化剂上适宜的Co担载量约为4.0wt%,低担载量时随Co担载量增加,表面CoOx物种中钴离子可还原能力增强,C3H8选择性催化还原NOx的低温转化活性增加;高担载量时,随Co担载量增加,单位Co离子的NO吸附量的减少以及催化剂表面活性中心数的减少,导致了Co/ZSM-5催化剂NOx的转化率和催化剂比速率(k)的下降。孔外表面Co3O4晶体的存在使催化剂表面产生较强的NO吸附,并在高温时有利于C3H8的氧化燃烧,使C3H8选择性催化还原NOx的活性降低。  相似文献   

11.
采用多种物理化学手段研究了在模拟的轻型柴油车尾气中不同Co担载量及Cu掺杂的Co/ZSM-5催化剂的Co组分分散状态、可还原性、NO吸附脱附性质对C3H8选择性催化还原NOx性能的影响。结果表明,浸渍法制备的Co/ZSM-5催化剂上既有外表面上的Co3+和Co2+物种,也有孔内的Co2+离子。富氧条件下Co/ZSM-5催化剂上C3H8选择性催化还原NOx的活性主要与ZSM-5载体孔外表面分散的CoOx物种中的钴离子可还原能力和NO吸附脱附性能密切相关。Co/ZSM-5催化剂上适宜的Co担载量约为4.0wt%,低担载量时随Co担载量增加,表面CoOx物种中钴离子可还原能力增强,C3H8选择性催化还原NOx的低温转化活性增加;高担载量时,随Co担载量增加,单位Co离子的NO吸附量的减少以及催化剂表面活性中心数的减少,导致了Co/ZSM-5催化剂NOx的转化率和催化剂比速率(k)的下降。孔外表面Co3O4晶体的存在使催化剂表面产生较强的NO吸附,并在高温时有利于C3H8的氧化燃烧,使C3H8选择性催化还原NOx的活性降低。  相似文献   

12.
FeII, CoII and NiII complexes of two tetraazamacrocycles (1,4,8,11‐tetrakis(carbamoylmethyl)‐1,4,8,11‐tetraazacyclotetradecane ( L1 ) and 1,4,7,10‐tetrakis(carbamoylmethyl)‐1,4,7,10‐tetraazacyclododecane ( L2 ) show promise as paraCEST agents for registration of temperature (paraCEST=paramagnetic chemical exchange saturation transfer). The FeII, CoII and NiII complexes of L1 show up to four CEST peaks shifted ≤112 ppm, whereas analogous complexes of L2 show only a single CEST peak at ≤69 ppm. Comparison of the temperature coefficients (CT) of the CEST peaks of [Co( L2 )]2+, [Fe( L2 )]2+, [Ni( L1 )]2+ and [Co( L1 )]2+ showed that a CEST peak of [Co( L1 )]2+ gave the largest CT (?0.66 ppm oC?1 at 4.7 T). NMR spectral and CEST properties of these complexes correspond to coordination complex symmetry as shown by structural data. The [Ni( L1 )]2+ and [Co( L1 )]2+ complexes have a six‐coordinate metal ion bound to the 1‐, 4‐amide oxygen atoms and four nitrogen atoms of the tetraazamacrocycle. The [Fe( L2 )]2+ complex has an unusual eight‐coordinate FeII bound to four amide oxygen atoms and four macrocyclic nitrogen atoms. For [Co( L2 )]2+, one structure has seven‐coordinate CoII with three bound amide pendents and a second structure has a six‐coordinate CoII with two bound amide pendents.  相似文献   

13.
The quest for new oxides with cations containing active lone‐pair electrons (E) covers a broad field of targeted specificities owing to asymmetric electronic distribution and their particular band structure. Herein, we show that the novel compound BaCoAs2O5, with lone‐pair As3+ ions, is built from rare square‐planar Co2+O4 involved in direct bonding between As3+E and Co2+ dz2 orbitals (Co As=2.51 Å). By means of DFT and Hückel calculations, we show that this σ‐type overlapping is stabilized by a two‐orbital three‐electron interaction allowed by the high‐spin character of the Co2+ ions. The negligible experimental spin‐orbit coupling is expected from the resulting molecular orbital scheme in O3AsE–CoO4 clusters.  相似文献   

14.
Herein, we highlight redox‐inert Zn2+ in spinel‐type oxide (ZnXNi1?XCo2O4) to synergistically optimize physical pore structure and increase the formation of active species on the catalyst surface. The presence of Zn2+ segregation has been identified experimentally and theoretically under oxygen‐evolving condition, the newly formed VZn?O?Co allows more suitable binding interaction between the active center Co and the oxygenated species, resulting in superior ORR performance. Moreover, a liquid flow Zn–air battery is constituted employing the structurally optimized Zn0.4Ni0.6Co2O4 nanoparticles supported on N‐doped carbon nanotube (ZNCO/NCNTs) as an efficient air cathode, which presents remarkable power density (109.1 mW cm?2), high open circuit potential (1.48 V vs. Zn), excellent durability, and high‐rate performance. This finding could elucidate the experimentally observed enhancement in the ORR activity of ZnXNi1?XCo2O4 oxides after the OER test.  相似文献   

15.
The Ziegler–Natta‐catalyzed polymerization of 1,3‐butadiene was investigated at a low aluminum alkyl/cobalt (Al/Co) ratio using two different soluble catalyst systems: cobalt(II) octanoate/diethylaluminum chloride/water and cobalt(II) octanoate/methylaluminoxane/tert‐butyl chloride. When the active‐center concentration was determined by the number‐average molecular weight technique, it was found that the percentage of active cobalt depended on the Al/Co ratio. Subsequently, an equilibrium reaction was proposed to be Co + 2Al ? CoAl2, where Co is cobalt(II) octanoate, Al is either of the aluminum alkyl‐activator species, and CoAl2 is the active catalyst. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2256–2261, 2001  相似文献   

16.
Bimetallic cobalt‐based spinel is sparking much interest, most notably for its excellent bifunctional performance. However, the effect of Fe3+ doping in Co3O4 spinel remains poorly understood, mainly because the surface state of a catalyst is difficult to characterize. Herein, a bifunctional oxygen electrode composed of spinel Co2FeO4/(Co0.72Fe0.28)Td(Co1.28Fe0.72)OctO4 nanoparticles grown on N‐doped carbon nanotubes (NCNTs) is designed, which exhibits superior performance to state‐of‐the‐art noble metal catalysts. Theoretical calculations and magnetic measurements reveal that the introduction of Fe3+ ions into the Co3O4 network causes delocalization of the Co 3d electrons and spin‐state transition. Fe3+ ions can effectively activate adjacent Co3+ ions under the action of both spin and charge effect, resulting in the enhanced intrinsic oxygen catalytic activity of the hybrid spinel Co2FeO4. This work provides not only a promising bifunctional electrode for zinc–air batteries, but also offers a new insight to understand the Co‐Fe spinel oxides for oxygen electrocatalysis.  相似文献   

17.
In an effort to develop robust molecular sensitizers for solar fuel production, the electronic structure and photodynamics of transition‐metal‐substituted polyoxometalates (POMs), a novel class of compound in this context, was examined. Experimental and computational techniques including femtosecond (fs) transient absorption spectroscopy have been used to study the cobalt‐containing Keggin POMs, [CoIIW12O40]6? ( 1 a ), [CoIIIW12O40]5? ( 2 a ), [SiCoII(H2O)W11O39]6? ( 3 a ), and [SiCoIII(H2O)W11O39]5? ( 4 a ), finding the longest lived charge transfer excited state so far observed in a POM and elucidating the electronic structures and excited‐state dynamics of these compounds at an unprecedented level. All species exhibit a bi‐exponential decay in which early dynamic processes with time constants in the fs domain yield longer lived excited states which decay with time constants in the ps to ns domain. The initially formed states of 1 a and 3 a are considered to result from metal‐to‐polyoxometalate charge transfer (MPCT) from CoII to W, while the longer‐lived excited state of 1 a is tentatively assigned to a localized intermediate MPCT state. The excited state formed by the tetrahedral cobalt(II) centered heteropolyanion ( 1 a ) is far longer‐lived (τ=420 ps in H2O; τ=1700 ps in MeCN) than that of 3 a (τ=1.3 ps), in which the single CoII atom is located in a pseudo‐octahedral addendum site. Short‐lived states are observed for the two CoIII‐containing heteropolyanions 2 a (τ=4.4 ps) and 4 a (τ=6.3 ps) and assigned solely to O→CoIII charge transfer. The dramatically extended lifetime for 1 a versus 3 a is ascribed to a structural change permitted by the coordinatively flexible central site, weak orbital overlap of the central Co with the polytungstate framework, and putative transient valence trapping of the excited electron on a single W atom, a phenomenon not noted previously in POMs.  相似文献   

18.
The quest for new oxides with cations containing active lone‐pair electrons (E) covers a broad field of targeted specificities owing to asymmetric electronic distribution and their particular band structure. Herein, we show that the novel compound BaCoAs2O5, with lone‐pair As3+ ions, is built from rare square‐planar Co2+O4 involved in direct bonding between As3+E and Co2+ dz2 orbitals (Co? As=2.51 Å). By means of DFT and Hückel calculations, we show that this σ‐type overlapping is stabilized by a two‐orbital three‐electron interaction allowed by the high‐spin character of the Co2+ ions. The negligible experimental spin‐orbit coupling is expected from the resulting molecular orbital scheme in O3AsE–CoO4 clusters.  相似文献   

19.
The oxygen vacancies of defective iron–cobalt oxide (FeCoOx‐Vo) nanosheets are modified by the homogeneously distributed sulfur (S) atoms. S atoms can not only effectively stabilize oxygen vacancies (Vo), but also form the Co?S coordination with Co active site in the Vo, which can modulate the electronic structure of the active site, enabling FeCoOx‐Vo‐S to exhibit much superior OER activity. FeCoOx‐Vo‐S exhibits a mass activity of 2440.0 A g?1 at 1.5 V vs. RHE in 1.0 m KOH, 25.4 times higher than that of RuO2. The Tafel slope is as low as 21.0 mV dec?1, indicative of its excellent charge transfer rate. When FeCoOx‐Vo‐S (anode catalyst) is paired with the defective CoP3/Ni2P (cathode catalyst) for overall water splitting, current densities of as high as 249.0 mA cm?2 and 406.0 mA cm?2 at a cell voltage of 2.0 V and 2.3 V, respectively, can be achieved.  相似文献   

20.
N‐Heterocyclic carbene based pincer ligands bearing a central silyl donor, [CSiC], have been envisioned as a class of strongly σ‐donating ligands that can be used for synthesizing electron‐rich transition‐metal complexes for the activation of inert bonds. However, this type of pincer ligand and complexes thereof have remained elusive owing to their challenging synthesis. We herein describe the first synthesis of a CSiC pincer ligand scaffold through the coupling of a silyl–NHC chelate with a benzyl–NHC chelate induced by one‐electron oxidation in the coordination sphere of a cobalt complex. The monoanionic CSiC ligand stabilizes the CoI dinitrogen complex [(CSiC)Co(N2)] with an unusual coordination geometry and enables the challenging oxidative addition of E−H bonds (E=C, N, O) to CoI to form CoIII complexes. The structure and reactivity of the cobalt(I) complex are ascribed to the unique electronic properties of the CSiC pincer ligand, which provides a strong trans effect and pronounced σ‐donation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号