首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 36 毫秒
1.
The droplets’ coalescence is instantaneous and rather complex in emulsion. The theoretical analysis of this process was presented by a former research, while visible experiments to verify these are still scarce. This work aims to show and analyze the visible water droplets’ coalescence on hydrophobic bamboo charcoal fibers and hydrophilic glass fibers in water-in-oil emulsion. An experimental setup with microscope and high-speed camera was designed and established to record the water droplets’ coalescence. The water droplets’ collision coalescence on bamboo charcoal fibers was observed, and the diameters of water droplets detaching from the fibers with different angles were measured. The angle between the fiber and the flow velocity can affect the diameters of water droplets detaching from the bamboo charcoal fibers, and cross-fibers can the enormously increase water diameters compared with single fiber. Meanwhile, the water droplets’ collision coalescence on glass fibers was observed and the result shows that the collision coalescence also occurred on the hydrophilic glass fibers when the droplet diameter was small. In addition, other factors, including flow velocity and droplets’ diameter for the coalescence on the hydrophilic glass fibers were investigated.  相似文献   

2.
Different characteristic surface structures such as capsules, regularly spaced droplets and fibers are made by electrostatic interaction between cationic chitosan and anionic poly(α,L ‐glutamic acid) via polyion complex formation. Spherical droplet capsules of varying diameters form in solutions. The strong fiber are spinnable by gravity and by a wet spinning in ethanol. The resulting PLG composite fiber is water‐insoluble, and has a potential as a new poly(α‐amino acid) fiber technology.  相似文献   

3.
Direct electrochemical characterization of freely moving nanoparticles (NPs) at the individual particle level is challenging. A method is presented that can achieve this goal based on the collision between a NP and an ultramicroelectrode (UME). By applying a sinusoidal potential to the UME and monitoring the current response in the frequency domain, a sudden change in the phase angle indicates the arrival of a NP at the UME. The response induced by the collision can be isolated and used to explore the properties of the NP. This method, analogous to a high‐speed camera, can obtain a snapshot of the properties of the single NP at the moment of a collision. The proposed method was employed to investigate the properties of both the hard catalytic Pt NP and soft electroactive emulsion droplets, and many new insights were revealed thereafter. The method also has the potential to be applied in many other fields, where the interested signals appear as discrete events.  相似文献   

4.
Leidenfrost levitated droplets can be used to accelerate chemical reactions in processes that appear similar to reaction acceleration in charged microdroplets produced by electrospray ionization. Reaction acceleration in Leidenfrost droplets is demonstrated for a base‐catalyzed Claisen–Schmidt condensation, hydrazone formation from precharged and neutral ketones, and for the Katritzky pyrylium into pyridinium conversion under various reaction conditions. Comparisons with bulk reactions gave intermediate acceleration factors (2–50). By keeping the volume of the Leidenfrost droplets constant, it was shown that interfacial effects contribute to acceleration; this was confirmed by decreased reaction rates in the presence of a surfactant. The ability to multiplex Leidenfrost microreactors, to extract product into an immiscible solvent during reaction, and to use Leidenfrost droplets as reaction vessels to synthesize milligram quantities of product is also demonstrated.  相似文献   

5.
A new electrochemical framework for tracking individual soft particles in solution and monitoring their fusion with polarized liquid–liquid interfaces is reported. The physicochemical principle lies in the interfacial transfer of an ionic probe confined in the particles dispersed in solution and that is released upon their collision and fusion with the fluid interface. As a proof‐of‐concept, spike‐like transients of a stochastic nature are reported in the current–time response of 1,2‐dichloroethane(DCE)|water(W) submilli‐interfaces after injection of DCE‐in‐W emulsions. The sign and potential dependence of the spikes reflect the charge and lipophilicity of the ionic load of the droplets. A comparison with dynamic light scattering measurements indicates that each spike is associated with the collision of a single sub‐picoliter droplet. This opens a new framework for the study of single fusion events at the micro‐ and nanoscale and of ion transport across biomimetic soft interfaces.  相似文献   

6.
We developed a novel microfluidic system, termed a micro-droplet collider, by utilizing the spatial-temporal localized liquid energy to realize chemical processes, which achieved rapid mixing between droplets having a large volume ratio by collision. In this paper, in order to clarify the characteristics of the micro-droplet collider, dynamics of droplet acceleration, stationary motion and collision in the gas phase in a microchannel were experimentally investigated with visualized images using a microscope equipped with a high-speed camera. The maximum velocity of 450 mm s(-1) and acceleration of 1500 m s(-2) of a 1.6 nL water droplet were achieved at an air pressure of 100 kPa. Measurement results of dynamic contact angles of droplets indicated that wettability of the surface played an important role in the stability of droplet acceleration and collision. We found that the bullet droplet penetrated into the target droplet at collision, which differed from bulk scale. The deformation of the droplet was strongly suppressed by the channel structure, thus stable collision and efficient utilization of the droplet energy were possible. These results are useful for estimating the localized energy, for improving the system in order to realize extreme performance, and for extending the applications of microfluidic devices.  相似文献   

7.
Experiments with stretching moderately concentrated polymer solutions have been carried out. Model experiments were carried out for poly(acrylonitrile) solutions in dimethyl siloxane. Just the choice of concentrated solutions allowed for a clear demonstration of a demixing effect with the formation of two separate phases—an oriented polymer fiber and solvent drops sitting on its surface. An original experimental device for following all subsequent stages in the demixing process was built. It combined two light beams, one transverse to the fiber and a second directed along (inside) the fiber, the latter played the role of an optical line. This gives a unique opportunity to observe processes occurring inside a fiber. The process of demixing starts from the volume phase separation across the whole cross section of a fiber at some critical deformation and the propagation of the front of demixing along the fiber. Then a solvent cylindrical skin appears which transforms into a system of separate droplets. New experimental data are discussed based on a comparison of the current different points of view on the phenomenon of deformation‐induced phase separation: thermodynamic shift of the equilibrium phase transition temperature, growth of stress‐induced concentration fluctuations in two‐component fluids, and mechanically pressing a solvent out from a polymer network. The general belief is that a rather specific (so‐called “beads‐on‐a‐string”) structure of a filament is realized in stretching dilute solutions: beads of a polymer solution connected by oriented polymer bridges forming a single object. The situation in stretching moderately concentrated solutions appears quite different: real phase separation was observed. So, the alternative phenomenon to the formation of the “beads‐on‐a‐string” structure has been experimentally proven. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 559–565  相似文献   

8.
In this article, a new large‐scale aligned fiber mats formation method called salt‐induced pulse electrospinning was developed. By electrospinning salted solution in a humid environment, traditional continuous electrospinning changed into pulse electrospinning and aligned fibers were thus formed. The possible mechanisms for the occurrence of salt‐induced pulse electrospinning and the formation of fiber alignment were studied. The continuous electrospinning changing into the pulse electrospinning was due to the change of viscosity and conductivity of salted polymer solution in a wet electrospinning condition. Fishing net‐shaped whipping region of the electrospinning jet during pulse electrospinning process was considered as the key factor for the formation of fiber alignment. The mechanical properties of the aligned fiber mat increased significantly compared with that of the random fiber mat. This aligned fiber preparation method only requires a very low rotating drum speed as the receiver and can produce large‐scale aligned fiber mats for many applications. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

9.
This paper describes a microfluidic platform for the on-demand generation of multiple aqueous droplets, with varying chemical contents or chemical concentrations, for use in droplet based experiments. This generation technique was developed as a complement to existing techniques of continuous-flow (streaming) and discrete-droplet generation by enabling the formation of multiple discrete droplets simultaneously. Here sets of droplets with varying chemical contents can be generated without running the risk of cross-contamination due to the isolated nature of each supply inlet. The use of pressure pulses to generate droplets in parallel is described, and the effect of droplet size is examined in the context of flow rates and surfactant concentrations. To illustrate this technique, an array of different dye-containing droplets was generated, as well as a set of droplets that displayed a concentration gradient of a fluorescent dye.  相似文献   

10.
Water‐in‐oil emulsion separations are important to the petrochemical industry for product quality, safety, environmental, and economic reasons. Glass fiber filter media are often used to remove water droplets out of water‐in‐oil emulsions. The experimental results in this work show that 1% by mass of polyamide nanofibers with diameters of about 150 nm added to conventional micron‐sized glass fiber filter media improves the separation efficiency of the filter media from 71 to 84%. The addition of similar amounts of micron‐sized polyamide fibers to the glass fiber media do not improve filter capture efficiency.  相似文献   

11.
We report on the formation of coacervate droplets from poly(diallyldimethylammonium chloride) with either adenosine triphosphate or carboxymethyl‐dextran using a microfluidic flow‐focusing system. The formed droplets exhibit improved stability and narrower size distributions for both coacervate compositions when compared to the conventional vortex dispersion techniques. We also demonstrate the use of two parallel flow‐focusing channels for the simultaneous formation and co‐location of two distinct populations of coacervate droplets containing different DNA oligonucleotides, and that the populations can coexist in close proximity up to 48 h without detectable exchange of genetic information. Our results show that the observed improvements in droplet stability and size distribution may be scaled with ease. In addition, the ability to encapsulate different materials into coacervate droplets using a microfluidic channel structure allows for their use as cell‐mimicking compartments.  相似文献   

12.
Scalable, bottom‐up chemical synthesis and electrospinning of novel Clsubstituted poly(para‐phenylene terephthalamide) (PPTA) nanofibers are herein reported. To achieve Cl‐PPTA nanofibers, the chemical reaction between the monomers was precisely controlled, and dissolution of the polymer into solvent was tailored to enable anisotropic solution formation and sufficient entanglement molecular weight. Electrospinning processing parameters were studied to understand their effects on fiber formation and mat morphology and then optimized to yield consistently high quality fibers. Importantly, the control of relative humidity during the fiber formation process was found to be critical, likely because water promotes hydrogen bond formation between the PPTA chains. The fiber and mat morphologies resulting from different combinations of chemistry and spinning conditions were observed using scanning electron microscopy, and observations were used as inputs to the optimization process. Tensile properties of single Cl‐PPTA nanofibers were characterized for the first time using a nanomanipulator mounted inside a scanning electron microscope (SEM), and fiber moduli measuring up to 70 GPa, and strengths exceeding 1 GPa were achieved. Given the excellent mechanical properties measured for the nanofibers, this chemical synthesis procedure and electrospinning protocol appear to be a promising route for producing a new class of nanofibers with ultrahigh strength and stiffness. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 563–573  相似文献   

13.
A novel electrospinning method using airflow, namely high pressure air‐jet split electrospinning, was proposed to fabricate polymer nanofibers with ultrahigh production rate. 7 wt % polyacrylonitrile spinning solution with a 0.157 Pa s viscosity was divided into micron size droplets by the filter screen in the front of the nozzle, and then these droplets were divided and split through high pressure airflow, which were drafted into nanofibers directly in the electric field and airflow field. In this study, the electric field distributions with different positive electrodes were simulated and their effect on fiber formation was investigated. The results show that electric field distribution and its intensity depended on electrodes area, a broader electric field distribution with a stronger intensity would bring about a larger cone angle of spraying jet region, at the same time, the contrast in the spray region enhanced. When the whole nozzle was charged, thinner fibers with about 170 nm could be prepared and the fiber production was 75.6 g/h. Compared with the conventional needle electrospinning, the throughput of nanofibers could be improved by thousands of times based on this novel electrospinning method. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 993–1001  相似文献   

14.
Dispensing uniform pico‐to‐nanoliter droplets has become one of essential components in various application fields from high‐throughput bio‐analysis to printing. In this study, a new method is suggested and demonstrated for dispensing a droplet on the top plate with an inverted geometry by using electric field. The process of dispensing droplets consists of two stages: (i) formation of liquid bridge by moving up the charged fluid mass using the electrostatic force between the charges on the fluid mass and the induced charges on the substrate and (ii) its break‐up by the motion of the top plate. Different from conventional electrohydrodynamic methods, electric induction enables the droplets to be dispensed on various surfaces including non‐conducting substrate. The use of capillarity with an inverted geometry removes the need of external pumps or elaborates control for constant flow feed. The droplet diameter has been characterized as a function of the nozzle‐to‐plate distance and the plate moving velocity. The robustness of the present method is shown in terms of nozzle length and applied voltage. Finally, its practical applicability is confirmed by rendering a 19 by 24 array of highly uniform droplets with only 1.8% size variation without use of any active feedback control.  相似文献   

15.
A mathematical model of seeded miniemulsion copolymerization of styrene-methyl methacrylate for oil-soluble initiator is presented. The mathematical model includes the mass transfer, from the miniemulsion droplets to the polymer particles, by both molecular diffusion and collision between miniemulsion droplets and the polymer particles. The mathematical model also includes the calculation of both the distribution of partices with i radicals and the average number of radicals per particle in the miniemulsion copolymerization using oil-soluble initator. Studies were carried out on the mass transfer coefficients of monomers across the interface between the miniemulsion droplet and the aqueous phase, hexadecane concentration in the miniemulsion droplets, the miniemulsion droplet sizes, and the collision between miniemulsion droplets. The results indicated that the copolymerization of styrene-methyl methacrylate was not a mass transfer controlled process. The mass transfer by collision between miniemulsion droplets and polymer particles plays an important role and was included in the model in order to predict the experimental data of seeded miniemulsion copolymerization.  相似文献   

16.
Two coarsening mechanisms of emulsions are well established: droplet coalescence (fusion of two droplets) and Ostwald ripening (molecular exchange through the continuous phase). Here a third mechanism is identified, contact ripening, which operates through molecular exchange upon droplets collisions. A contrast manipulated small‐angle neutron scattering experiment was performed to isolate contact ripening from coalescence and Ostwald ripening. A kinetic study was conducted, using dynamic light scattering and monodisperse nanoemulsions, to obtain the exchange key parameters. Decreasing the concentration or adding ionic repulsions between droplets hinders contact ripening by decreasing the collision frequency. Using long surfactant chains and well‐hydrated heads inhibits contact ripening by hindering fluctuations in the film. Contact ripening can be controlled by these parameters, which is essential for both emulsion formulation and delivery of hydrophobic ingredients.  相似文献   

17.
Micrometer sized multi‐hollow spheres of epoxy resin were prepared by a physical method so‐called phase inversion emulsification technique. The formation mechanism of the titled spheres was studied by incomplete phase inversion. The requisite for the formation of multi‐hollow spheres was that irreversible coalescence among the water droplets under shear action before the phase inversion point existed. This process could be facilitated by a lower emulsifier concentration and a higher emulsification temperature. Moreover, a theoretical explanation of the formation of the titled spheres was presented.  相似文献   

18.
The biomimetic dynamic behaviours of emulsions are receiving increasing attention from the broad scientific community; however, the spatiotemporal control and functionalization of emulsions based on simple fusion‐induced method is rarely mentioned. A design for protein‐stabilized oil‐in‐water droplets and phospholipid‐stabilized oil‐in‐water droplets is described and a substance‐diffusion‐mediated fusion mechanism proposed within these two different emulsion communities. Significantly, a range of fusion‐induced high‐order behaviours were successfully demonstrated including competitive fusion, fusion‐induced evolution in membrane complexity, and diversified structures with the formation of Janus or various patchy morphologies, fusion‐induced membrane maturation, as well as fusion‐induced multifunctionalization with a directional motility behaviour. These results highlight the fusion‐induced diverse dynamic behaviours in complex emulsions communities and provide a platform for advancing versatile applications of emulsions.  相似文献   

19.
We have synthesized a homobifunctional active ester cross‐linking reagent containing a TEMPO (2,2,6,6‐tetramethylpiperidine‐1‐oxy) moiety connected to a benzyl group (Bz), termed TEMPO‐Bz‐linker. The aim for designing this novel cross‐linker was to facilitate MS analysis of cross‐linked products by free radical initiated peptide sequencing (FRIPS). The TEMPO‐Bz‐linker was reacted with all 20 proteinogenic amino acids as well as with model peptides to gain detailed insights into its fragmentation mechanism upon collision activation. The final goal of this proof‐of‐principle study was to evaluate the potential of the TEMPO‐Bz‐linker for chemical cross‐linking studies to derive 3D‐structure information of proteins. Our studies were motivated by the well documented instability of the central NO―C bond of TEMPO‐Bz reagents upon collision activation. The fragmentation of this specific bond was investigated in respect to charge states and amino acid composition of a large set of precursor ions resulting in the identification of two distinct fragmentation pathways. Molecular ions with highly basic residues are able to keep the charge carriers located, i.e. protons or sodium cations, and consequently decompose via a homolytic cleavage of the NO―C bond of the TEMPO‐Bz‐linker. This leads to the formation of complementary open‐shell peptide radical cations, while precursor ions that are protonated at the TEMPO‐Bz‐linker itself exhibit a charge‐driven formation of even‐electron product ions upon collision activation. MS3 product ion experiments provided amino acid sequence information and allowed determining the cross‐linking site. Our study fully characterizes the CID behavior of the TEMPO‐Bz‐linker and demonstrates its potential, but also its limitations for chemical cross‐linking applications utilizing the special features of open‐shell peptide ions on the basis of selective tandem MS analysis. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
Highly-charged droplets, as formed by an electrospray process, are known to undergo asymmetric fission to form smaller droplets. We have observed a chemical and physical separation phenomenon that occurs in the droplet break-up process and is related to a compound's surface activity in solution. Two experimental approaches demonstrated that the smaller satellite droplets and the progeny droplets generated by the spray formation and asymmetric fission processes to be surfactant-enriched. These smaller droplets were also effectively separated from the larger primary and residual droplets because of their smaller inertia and high surface charge density, and a region attributed to the initially formed smaller satellite droplets was found to be strikingly confined in a narrow periphery region of the electrospray. The phenomenon may have utility for chemical separations and have significant implications for the sensitivity and selectivity of electrospray ionization-mass spectrometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号