首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Single‐walled carbon nanotubes (SWNTs) synthesized with different methods are investigated by using multiple characterization techniques, including Raman scattering, optical absorption, and X‐ray absorption near edge structure, along with X‐ray photoemission by following the total valence bands and C 1s core‐level spectra. Four different SWNT materials (produced by arc discharge, HiPco, laser ablation, and CoMoCat methods) contain nanotubes with diameters ranging from 0.7 to 2.8 nm. The diameter distribution and the composition of metallic and semiconducting tubes of the SWNT materials are strongly affected by the synthesis method. Similar sp2 hybridization of carbon in the oxygenated SWNT structure can be found, but different surface functionalities are introduced while the tubes are processed. All the SWNTs demonstrate stronger plasmon resonance excitations and lower electron binding energy than graphite and multiwalled carbon nanotubes. These SWNT materials also exhibit different valence‐band X‐ray photoemission features, which are considerably affected by the nanotube diameter distribution and metallic/semiconducting composition.  相似文献   

2.
MOAnalyzer, a Matlab‐based program, has been developed to facilitate the analysis of density functional theory output files from ORCA. The program allows the user to define fragments within a molecule and then provides information on the contribution of each fragment to the molecular orbitals based on the Loewdin population analysis. Correlations to spectroscopy (X‐ray absorption and X‐ray emission) are also obtained, and the resulting information can be visualized in tables or MO diagrams. © 2012 Wiley Periodicals, Inc.  相似文献   

3.
Its importance for life and its unusual properties keep water within the focus of ongoing research; this focus especially applies to water in the liquid phase. Scientists agree that the hydrogen‐bond network, which is formed by interactions between the water molecules, is key for understanding the anomalies of water. However, a better understanding of the structure of this network, as well as its dynamics, must yet be established. Soft X‐ray spectroscopy allows the investigation of the local electronic structure of water by probing the occupied and unoccupied valence molecular orbitals. In this Focus Review, we present soft‐X‐ray‐based techniques, their development in terms of liquid spectroscopy, and recent studies on the hydrogen‐bond network of liquid water.  相似文献   

4.
5.
Ceric ammonium nitrate (CAN) is a single‐electron‐transfer reagent with unparalleled utility in organic synthesis, and has emerged as a vital feedstock in diverse chemical industries. Most applications use CAN in solution where it is assigned a monomeric [CeIV(NO3)6]2? structure; an assumption traced to half‐century old studies. Using synchrotron X‐rays and Raman spectroscopy we challenge this tradition, converging instead on an oxo‐bridged dinuclear complex, even in strong nitric acid. Thus, one equivalent of CAN is recast as a two‐electron‐transfer reagent and a redox‐activated superbase, raising questions regarding the origins of its reactivity with organic molecules and giving new fundamental insight into the stability of polynuclear complexes of tetravalent ions.  相似文献   

6.
7.
Polyaniline is a model molecular system in the study of conductive polymers. Ionic liquids, on the other hand, are becoming more and more a very convenient alternative for conventional organic solvents. The dissolution of polyaniline‐emeraldine base (PANI‐EB) in imidazolium ILs leads to its doping, as indicated by optical and resonance Raman spectroscopies. In this study, it is proposed that the interaction of PANI‐EB and imidazolium ILs involves the specific interaction of the quinoid moiety of the former with the imidazolium ring of the latter, an interpretation that is also based on N K‐edge XANES measurements of neat PANI‐EB, neat ILs, and of their solutions.

  相似文献   


8.
Through X‐ray absorption and emission spectroscopies, the chemical, electronic and structural properties of organic species in solution can be observed. Near‐edge X‐ray absorption fine structure (NEXAFS) and resonant inelastic X‐ray scattering (RIXS) measurements at the nitrogen K‐edge of para‐aminobenzoic acid reveal both pH‐ and solvent‐dependent variations in the ionisation potential (IP), 1s→π* resonances and HOMO–LUMO gap. These changes unequivocally identify the chemical species (neutral, cationic or anionic) present in solution. It is shown how this incisive chemical state sensitivity is further enhanced by the possibility of quantitative bond length determination, based on the analysis of chemical shifts in IPs and σ* shape resonances in the NEXAFS spectra. This provides experimental access to detecting even minor variations in the molecular structure of solutes in solution, thereby providing an avenue to examining computational predictions of solute properties and solute–solvent interactions.  相似文献   

9.
Molecular design: The electronic structure of conjugated polyelectrolytes as a function of ionization potential (IP) and electron affinity (EA) is determined using X‐ray absorption and emission spectroscopy (see figure). Different functional groups give rise to dissimilar transport gaps and exciton binding energies.

  相似文献   


10.
11.
Determination of the factors that affect the d‐band center of catalysts is required to explain their catalytic properties. Resonant inelastic X‐ray scattering (RIXS) enables direct imaging of electronic transitions in the d‐band of Pt catalysts in real time and in realistic environmental conditions. Through a combination of in situ, temperature‐resolved RIXS measurements and theoretical simulations we isolated and quantified the effects of bond‐length disorder and adsorbate coverage (CO and H2) on the d‐band center of 1.25 nm size Pt catalysts supported on carbon. We found that the decrease in adsorbate coverage at elevated temperatures is responsible for the d band shifts towards higher energies relative to the Fermi level, whereas the effect of the increase in bond‐length disorder on the d‐band center is negligible. Although these results were obtained for a specific case of non‐interacting support and weak temperature dependence of the metal–metal bond length in a model catalyst, this work can be extended to a broad range of real catalysts.  相似文献   

12.
The applicability of a UV micro-Raman setup was assessed for the rapid identification of fibrous asbestos minerals using 257 and 244 nm laser light for excitation. Raman spectra were obtained from six asbestos reference standards belonging to two basic structural groups: the serpentines (chrysotile) and the amphiboles (crocidolite, tremolite, amosite, anthophyllite, and actinolite). The UV Raman spectra reported here for the first time are free from fluorescence, which is especially helpful in assessing the hydroxyl-stretching vibrations. The spectra exhibit sharp bands characteristic of each asbestos species, which can be used for the unambiguous identification of known and unknown asbestos fibres. Evident changes of the relative band intensities sensitively reflect the chemical substitutions that typically occur in asbestos minerals. The elemental composition of the asbestos reference samples was analysed by using a scanning electron microscope equipped with an energy-dispersive X-ray (EDX) spectrometer. The discussion of the experimental results in terms of EDX analysis sheds new light on the structural and vibrational consequences of cation distribution in asbestos minerals.  相似文献   

13.
Rational development of efficient photocatalytic systems for hydrogen production requires understanding the catalytic mechanism and detailed information about the structure of intermediates in the catalytic cycle. We demonstrate how time‐resolved X‐ray absorption spectroscopy in the microsecond time range can be used to identify such intermediates and to determine their local geometric structure. This method was used to obtain the solution structure of the CoI intermediate of cobaloxime, which is a non‐noble metal catalyst for solar hydrogen production from water. Distances between cobalt and the nearest ligands including two solvent molecules and displacement of the cobalt atom out of plane formed by the planar ligands have been determined. Combining in situ X‐ray absorption and UV/Vis data, we demonstrate how slight modification of the catalyst structure can lead to the formation of a catalytically inactive CoI state under similar conditions. Possible deactivation mechanisms are discussed.  相似文献   

14.
15.
Solid solution phases Li7‐2xMgx[VN4] (0 < x ≤ 1) with varying Mg‐content are obtained as yellow microcrystalline powders from heat treatment of mixtures of VN, Li3N and Mg3N2 or from mixtures of Li7[VN4] and Mg3N2 at 1370 K in N2 atmosphere at ambient pressure. At substitution parameter values of x > 0.5 a subsequent distortion from the ideal cubic unit cell to an orthorhombic unit cell is observed. The crystal structure of Li7‐2xMgx[VN4] with x ≈ 1 was refined from neutron and X‐ray powder diffraction data (space group Pbca, No. 61, a = 963.03(3) pm, b = 958.44(3) pm, c = 951.93(2) pm, neutron pattern 14° — 156° 2θ, step non‐linear ≈ 0.0782° 2θ, No. of measured points 1816, Rp = 0.089, Rwp = 0.115, RBragg = 0.155, RF = 0.114; X‐ray pattern 10° — 98° 2θ, step 0.005° 2θ, No. of measured points 17600, Rp = 0.028, Rwp = 0.045, RBragg = 0.113, RF = 0.133, structure variables: 45). The crystal structure resembles a Li2O type superstructure with the atomic arrangement of β‐Li7[VN4] and with two crystallographic Li‐sites each substituted by Mg with statistical occupation factors of 0.5. Chemical analyses prove the composition and XAS spectroscopy at the V K‐edge support the +5 oxidation state assignment for vanadium. XAS data also support the tetrahedral coordination of vanadium by N as indicated by the structure refinements.  相似文献   

16.
Lithium cobalt oxide (LiCoO(2)) particles are modified using rotor blade grinding and re-annealing and used as the active electrode material versus lithium in the 3-0 V potential interval, in which a maximum capacity of 903 mA h g(-1) is achieved. X-ray absorption near edge structure spectra reveal the complete reduction of Co(3+) to Co metal at 0 V. Cell recharge leads to an incomplete reoxidation of cobalt. A maximum reversible capacity of 812 mA h g(-1) is obtained, although a poor capacity retention upon prolonged cycling may limit its application.  相似文献   

17.
18.
19.
Understanding of oxidative processes such as solution-phase ozonolysis in multiwalled carbon nanotubes (MWNTs) is of fundamental importance in devising applications of these tubes as components in composite materials, as well as for development of cutting and filling protocols. We present here an evaluation of various spectroscopic tools to study the structure and composition of functionalized nanotubes. We demonstrate near-edge X-ray absorption fine structure (NEXAFS) spectroscopy as a particularly useful and effective technique for studying the surface chemistry of carbon nanotubes.  相似文献   

20.
The structures of two types of guanidine–quinoline copper complexes have been investigated by single‐crystal X‐ray crystallography, K‐edge X‐ray absorption spectroscopy (XAS), resonance Raman and UV/Vis spectroscopy, cyclic voltammetry, and density functional theory (DFT). Independent of the oxidation state, the two structures, which are virtually identical for solids and complexes in solution, resemble each other strongly and are connected by a reversible electron transfer at 0.33 V. By resonant excitation of the two entatic copper complexes, the transition state of the electron transfer is accessible through vibrational modes, which are coupled to metal–ligand charge transfer (MLCT) and ligand–metal charge transfer (LMCT) states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号