首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以铝片为基底, 经电化学腐蚀和沸水处理制备了多级微纳米结构; 通过气相沉积和涂油分别制备了超疏水表面、 疏水超润滑(slippery)表面和亲水slippery表面; 探究了表面不同的特殊浸润性(超亲水、 超疏水、 疏水slippery和亲水slippery)对液滴凝结的影响. 结果表明, 超亲水表面的液滴凝结属于膜状冷凝, 超疏水表面和slippery表面的液滴凝结均属于滴状冷凝. 超疏水表面液滴合并时, 合并的液滴会不定向弹离表面. 疏水slippery表面和亲水slippery表面由于表面浸润性的不同导致液滴成核密度和液滴合并的差异, 亲水slippery表面凝结液滴的最大体积远大于疏水slippery表面凝结液滴的最大体积. 4种表面的雾气收集效率由大到小依次为亲水slippery表面>疏水slippery表面>超亲水表面>超疏水表面.  相似文献   

2.
《先进技术聚合物》2018,29(8):2317-2326
We develop a new strategy for the continuous separation of oil from water surface using a novel tubular unit based on graphene coated polyurethane (P‐GEPU) sponge, and the P‐GEPU sponge was fabricated by a simple dip‐coating method; the as‐prepared sponges could adsorb different kinds of oil and organic liquids while repelling water. Moreover, the tubular unit was assembled by wrapping the P‐GEPU sponge on a porous PU hollow tube and combined with the accessories including pipes and joints. The tubular unit could float on the surface of water, and a continuous oil collection from water surface through vacuum pressure could be fulfilled, showing a high oil‐water separation efficiency (>96%). Finally, oil‐water separation efficiency remains above 93% after 10 cycles, exhibiting excellent reusability. In addition, our findings are easily scaled up, showing a great promise for large‐scale oil spill remediation.  相似文献   

3.
In this study, the authors researched the preparations of superhydrophilic/superhydrophobic surfaces on commercial cup stock polyethylene coated papers by using sparked aluminum nanoparticles deposited on substrates through a sparking process. In this stage, the surface was porous and showed superhydrophilic properties. The samples were then annealed in air at various temperatures and some transformed to superhydrophobicity. It is well known that a suitable roughness in combination with low surface energy has been required to obtain superhydrophobic surfaces. Therefore, it is believed that during annealing process, when polyethylene is diffused from the substrate through the nanoparticle films and the superhydrophobic characteristics were created. The scanning electron microscope images showed that the film surfaces had a fluffy structure for both the as‐deposited and the annealed samples. However, the atomic force microscopy phase images showed completely different surface properties. Moreover, the X‐ray photoelectron spectroscopy spectra showed different surface chemical compositions. The experimental results revealed that the working temperature to produce superhydrophobic surfaces depended on the sparked film thickness. Furthermore, in order to prove the assumption explained above, glass and poly (methyl methacrylate) were also used as substrates.  相似文献   

4.
介绍了仿生超疏表面的工作机制以及疏水整理液的发展, 系统综述了近10年来特殊浸润性在开拓多功能绿色纺织领域的研究进展, 讨论了双面超疏、 超疏/超亲、 图案化及可响应浸润性纺织品的制备技术及应用, 介绍近几年在纺织品疏水化功能改性方面取得的前瞻性工作, 包括自清洁防污、 油水分离、 机械耐久、 图案化、 自修复、 单向运输等, 特别是在智能响应、 电子可穿戴、 能源等新兴领域方面的应用. 最后, 对超疏水纺织功能材料目前所面临的挑战及未来发展的方向进行了展望.  相似文献   

5.
We report a simple and environment friendly method to fabricate superhydrophobic metallic mesh surfaces for oil/water separation. The obtained mesh surface exhibits superhydrophobicity and superoleophilicity after it was dried in an oven at 200 °C for 10 min. A rough silver layer is formed on the mesh surface after immersion, and the spontaneous adsorption of airborne carbon contaminants on the silver surface lower the surface free energy of the mesh. No low‐surface‐energy reagents and/or volatile organic solvents are used. In addition, we demonstrate that by using the mesh box, oils can be separated and collected from the surface of water repeatedly, and that high separation efficiencies of larger than 92 % are retained for various oils. Moreover, the superhydrophobic mesh also possesses excellent corrosion resistance and thermal stability. Hence, these superhydrophobic meshes might be good candidates for the practical separation of oil from the surface of water.  相似文献   

6.
姜晓峰  于维钊  王继乾 《化学通报》2021,84(4):290-304,321
油水乳液和油水混合物的分离对解决工业含油废水以及原油泄漏造成的污染问题具有重要的意义.近年来应用于油水分离的超润湿材料引起了广泛的关注,并展现出良好的应用前景.本文综述了近年来利用超润湿性低成本、环保的天然材料通过过滤和吸附技术分离油水乳液和混合物的研究进展.对于每一种天然材料,如沙粒、木材、椰子壳等,介绍了代表性的研...  相似文献   

7.
The exploration of nonhazardous nanoparticles to fabricate a template-driven superhydrophobic surface is of great ecological importance for oil/water separation in practice. In this work, nano-hydroxyapatite (nano-HAp) with good biocompatibility was easily developed from discarded oyster shells and well incorporated with polydimethylsiloxane (PDMS) to create a superhydrophobic surface on a polyurethane (PU) sponge using a facile solution–immersion method. The obtained nano-HAp coated PU (nano-HAp/PU) sponge exhibited both excellent oil/water selectivity with water contact angles of over 150° and higher absorption capacity for various organic solvents and oils than the original PU sponge, which can be assigned to the nano-HAp coating surface with rough microstructures. Moreover, the superhydrophobic nano-HAp/PU sponge was found to be mechanically stable with no obvious decrease of oil recovery capacity from water in 10 cycles. This work presented that the oyster shell could be a promising alternative to superhydrophobic coatings, which was not only beneficial to oil-containing wastewater treatment, but also favorable for sustainable aquaculture.  相似文献   

8.
In this work, we have studied superhydrophilic and superhydrophobic transitions on the vertically aligned multiwalled carbon nanotube (VACNT) surfaces. As-grown, the VACNT surfaces were superhydrophobic. Pure oxygen plasma etching modified the VACNT surfaces to generate superhydrophilic behavior. Irradiating the superhydrophilic VACNT surfaces with a CO2 laser (up to 50?kW?cm?2) restored the superhydrophobicity to a level that depended on the laser intensity. Contact angle and surface energy measurements by the sessile drop method were used to examine the VACNT surface wetting. X-ray photoelectron spectroscopy (XPS) showed heavy grafting of the oxygen groups onto the VACNT surfaces after oxygen plasma etching and their gradual removal, which also depended on the CO2 laser intensity. These results show the great influence of polar groups on the wetting behavior, with a strong correlation between the polar part of the surface energy and the oxygen content on the VACNT surfaces. In addition, the CO2 laser treatment created an interesting cage-like structure that may be responsible for the permanent superhydrophobic behavior observed on these samples.  相似文献   

9.
Surface roughness is promotive of increasing their hydrophilicity or hydrophobicity to the extreme according to the intrinsic wettability determined by the surface free energy characteristics of a base substrate. Top-down etched silicon nanowires are used to create superhydrophilic surfaces based on the hemiwicking phenomenon. Using fluorine carbon coatings, surfaces are converted from superhydrophilic to superhydrophobic to maintain the Cassie-Baxter state stability by reducing the surface free energy to a quarter compared with intrinsic silicon. We present the robust criteria by controlling the height of the nanoscale structures as a design parameter and design guidelines for superhydrophilic and superhydrophobic conditions. The morphology of the silicon nanowires is used to demonstrate their critical height exceeds several hundred nanometers for superhydrophilicity, and surpasses a micrometer for superhydrophobicity. Especially, SiNWs fabricated with a height of more than a micrometer provide an effective means of maintaining superhydrophilic (<10°) long-term stability.  相似文献   

10.
Three reusable and durable superhydrophobic nanofibrous filters were prepared by dip coating the nanofibrous fabric in the three different dispersed solutions of the newly modified nanoparticles (ZnO‐NSPO, AlOO‐NSPO, and titanium dioxide [TiO2]‐NSPO). The contact angle results proved that the TiO2‐NSPO coated nanofibrous polyacrylonitrile (PAN) filter was hydrophobic with the water contact angle (WCA) of 141° while the ZnO‐NSPO and AlOO‐NSPO coated nanofibrous PAN filters were superhydrophobic with the WCA of 168° and 152°, respectively. The as‐prepared filters can be utilized as an effective martial for oil‐water separation with separation efficiency of over 98%.  相似文献   

11.
Cellulose-based lotus-leaf-like filter paper for selective separation of oil/water was prepared. Experimentally, cellulose nanofibril aerogel microspheres prepared by ultrasonic atomization method were coated on commercial filter papers to form unique “micro–nano” structured surface. By controlling both the morphology and chemistry of the surface, the papers could be either under-water superoleophobic or under-oil superhydrophobic. It was found that the filter papers could be engineered to effectively filter only oil or only water from their mixtures.  相似文献   

12.
The fabrication of novel hydrophobic, superhydrophobic, and oleophobic surfaces on glass using nanosilica particles modified with polymer brushes prepared via surface initiated Cu(0)‐mediated reversible‐deactivation radical polymerization was demonstrated. Monomers including n‐butyl acrylate, 2,2,2‐trifluoroethyl methacrylate, and 1,1,1,3,3,3‐hexafluoroisopropyl acrylate were used to synthesize a series of nanosilica–polymer organic/inorganic hybrid materials. Products were analyzed using infrared spectroscopy, thermogravimetric analysis, scanning and transmission electron microscopy. The coated nanosilica showed core–shell structures that contains polymer brushes up to 67 wt %. The application of these particles for modifying surface wettability was examined by covalently attaching them to glass via a recently developed one‐pot “grafting to” methodology using “thio‐bromo click” chemistry. Atomic force microscopy topographic images show up to 25 times increase in roughness of the coated glass compared to blank glass sample. Contact angle measurements showed that nanosilica coated with PBA and PTFEM produced hydrophobic glass surfaces, while a superhydrophobic and oleophobic surface was generated using nanosilica functionalized with PHFIPA. This novel methodology can produce superhydrophobic and oleophobic surfaces in an easy and fast way without the need for tedious and time‐consuming processes, such as layer‐by‐layer deposition, high temperature calcination, and fluorinated oil infusion. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018  相似文献   

13.
A novel bi‐functional Janus cotton fabric is used to separate oil from oil‐in‐water emulsions. This fabric is superhydrophobic on one surface and polyamine‐bearing on the other. When used as a filter, the polyamine‐bearing side causes the micrometer‐sized oil droplets to coalesce. The coalesced oil then fills fabric pores on the superhydrophobic side and selectively permeates it. Oil separation using this method is rapid and the separated oil is pure. Furthermore, the content of the model oil hexadecane (HD) in water after a separation can be reduced to less than 0.03±0.03 vol %. These features demonstrate the practical potential of this technology.  相似文献   

14.
频繁发生的石油泄漏事故以及工业含油污水的违规排放不仅造成了巨大的经济损失,而且严重破坏了人类赖以生存的生态环境。为了净化被油污染的水域,研究者们近年来开始研究出了各种特殊润湿性(如超疏水或超疏油)的材料用于实现油水分离。超疏水和超疏油可以通过设计材料表面的微观几何形貌和化学分子组成来获得。通过各种微纳制备手段使材料表现出对油和水截然相反的极端润湿性,是这类材料实现油水分离的关键所在。本文首先阐述了实现油水分离的重要意义,并介绍了材料表面润湿性的相关理论基础。根据材料对水和油所表现出的不同超疏液性与超亲液性,对油水分离材料从以下三类分别介绍:(ⅰ)超疏水/超亲油材料,(ⅱ)超疏油/超亲水材料,(ⅲ)智能响应润湿性材料。对于每一类油水分离材料,本文概括了国际上近期相关的代表性研究工作,包括材料的制备方法和实现油水分离的原理和过程,以及这些材料的主要特点和应用。最后,针对基于特殊润湿性材料实现油水分离,探讨了该研究领域目前存在的主要问题和面临的挑战,并对该领域的应用前景进行了展望。  相似文献   

15.
Evaluation of the hydrophobic/hydrophilic interaction individually between the sorbent and target compounds in sample pretreatment is a big challenge. Herein, a smart titanium substrate with switchable surface wettability was fabricated and selected as the sorbent for the solution. The titanium wires and meshes were fabricated by simple hydrothermal etching and chemical modification so as to construct the superhydrophilic and superhydrophobic surfaces. The micro/nano hierarchical structures of the formed TiO2 nanoparticles in situ on the surface of Ti substrates exhibited the switchable surface wettability. After UV irradiation for about 15.5 h, the superhydrophobic substrates became superhydrophilic. The morphologies and element composition of the wires were observed by SEM, EDS, and XRD, and their surface wettabilities were measured using the Ti mesh by contact angle goniometer. The pristine hydrophilic wire, the resulting superhydrophilic wire, superhydrophobic wire, and the UV-irradiated superhydrophilic wire were filled into a stainless tube as the sorbent instead of the sample loop of a six-port valve for on-line in-tube solid-phase microextraction. When employed in conjunction with HPLC, four kinds of wires were comparatively applied to extract six estrogens in water samples. The optimal conditions for the preconcentration and separation of target compounds were obtained with a sample volume of 60 mL, an injection rate of 2 mL/min, a desorption time of 2 min, and a mobile phase of acetonile/water (47/53, v/v). The results showed that both the superhydrophilic wire and UV-irradiated wire had the highest extraction efficiency for the polar compounds of estrogens with the enrichment factors in the range of 20–177, while the superhydrophobic wire exhibited the highest extraction efficiency for the non-polar compounds of five polycyclic aromatic hydrocarbons (PAHs). They demonstrated that extraction efficiency was mainly dependent on the surface wettability of the sorbent and the polarity of the target compounds, which was in accordance with the molecular theory of like dissolves like.  相似文献   

16.
郑建勇  冯杰  钟明强 《高分子学报》2010,(10):1186-1192
以碳酸钙(CaCO3)颗粒层为模板,运用简单的热压和酸蚀刻相结合的方法制备聚合物超亲水/超疏水表面.首先在玻璃基底上均匀铺撒一层CaCO3颗粒,以此作为模板,通过热压线性低密度聚乙烯(LLDPE)使CaCO3颗粒均匀镶嵌在聚合物表面,获得了超亲水性质;进一步经酸蚀得到了具有微米和亚微米多孔结构的表面,其水滴静态接触角(WCA)可达(152.7±0.8)°,滚动角小于3°,具备超疏水性质.表面浸润性能和耐水压冲击性能研究表明该超疏水表面具有良好的稳定性和持久性.用同样工艺微模塑/酸蚀刻其它疏水性聚合物,得到类似结果.  相似文献   

17.
Fabrication of suerhydrophobic materials towards oil/water separation and oil absorption has been receiving great attention nowadays, due to the significant increase of industrial oily wastewater and frequent accident of oil spill. In most previous studies, the usage of expensive precursors restricted the wide applications of prepared superhydrophobic materials. In this work, superhydrophobic filter paper, fabric and polyester sponges were fabricated by dip-coating the mixed solution of polystyrene and xerogels, which were prepared with tetraethoxysilane and polymethylhydrosiloxane, based on previous work. The as-fabricated fabric can effectively separate oil and water mixtures and possesses excellent reusability; more significantly, the materials maintained its good hydrophobic and excellent oil/water separation capacity even after ten cycles. Interestingly enough, the stability was provided, as a result, the fabric still exhibited superhydrophobic after 100 abrasion times and showed high repellency towards many liquids with different pH values. Additionally, the coated polyester sponges can quickly absorb various oil and organic liquid, which will offer a practical application for the treatment of seawater or oily wastewater. By contrast, this experiment process is simple and avoided using costly fluoro-chemicals or complicated fabrication process.  相似文献   

18.
Oil/water separation through superhydrophobic/superoleophilic materials has attracted considerable interest over the past decades; however, dealing with oil spills on broad waters through an active way remains a challenge. Herein, we report a self‐propelled smart device driven by the decomposition of hydrogen peroxide that can spontaneously move on the water surface and collect floating oil droplets inside with superhydrophobic and superoleophilic properties. Moreover, the self‐propelled smart device exhibits excellent stability and high efficiency for oil/water separation. We believe this study may provide a promising strategy for fabricating smart aquatic devices that have potential applications in water remediation.  相似文献   

19.
A simple, environmentally benign and energy efficient process for fabricating single faced superhydrophilic/hydrophobic cotton fabrics by controlling surface texture and chemistry at the nano/microscale is reported here. Stable ultra-hydrophobic surfaces with advancing and receding water droplet contact angles in excess of 146° as well as extreme superhydrophilic surfaces are obtained. Hydrophobic water-repellent cotton fabrics were obtained following plasma treatment through diamond-like carbon (DLC) coating by plasma enhanced chemical vapour deposition. The influence of changing different precursor’s plasma pre-treatments such as H2, Ar or O2 on the properties of DLC coatings is also evaluated using atomic force microscopy, X-ray photoelectron spectroscopy, attenuated total reflection Fourier transform infrared spectroscopy, and analysed in terms of contact angle measurements. Because of the DLC coating, the coated fabric showed to endure its superhydrophobic character even after 12 months.  相似文献   

20.
Separation of micro‐scaled water‐in‐oil droplets is important in environmental protection, bioassays, and saving functional inks. So far, bulk oil–water separation has been achieved by membrane separation and sponge absorption, but micro‐drop separation still remains a challenge. Herein we report that instead of the “plug‐and‐go” separation model, tiny water‐in‐oil droplets can be separated into pure water and oil droplets through “go‐in‐opposite ways” on curved peristome‐mimetic surfaces, in milliseconds, without energy input. More importantly, this overflow controlled method can be applied to handle oil‐in‐oil droplets with surface tension differences as low as 14.7 mN m−1 and viscous liquids with viscosities as high as hundreds centipoises, which markedly increases the range of applicable liquids for micro‐scaled separation. Furthermore, the curved peristome‐mimetic surface guides the separated drops in different directions with high efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号