首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The formal [3+2] cycloaddition of epoxides and unsaturated compounds is a powerful methodology for the synthesis of densely functionalized five‐membered heterocyclic compounds containing oxygen. Described is a novel enantioselective formal [3+2] cycloaddition of epoxides under Brønsted base catalysis. The bis(guanidino)iminophosphorane as a chiral organosuperbase catalyst enabled the enantioselective reaction of β,γ‐epoxysulfones with imines, owing to its strong basicity and high stereocontrolling ability, to provide enantioenriched 1,3‐oxazolidines having two stereogenic centers, including a quaternary one, in a highly diastereo‐ and enantioselective manner.  相似文献   

2.
Although asymmetric phosphine catalysis is a powerful tool for the construction of various chiral carbon centers, its synthetic potential toward an enantioenriched atropisomer has not been explored yet. Reported herein is a phosphine‐catalyzed atroposelective (4+2) annulation of δ‐acetoxy allenoates and 2‐hydroxyquinone derivatives. The reaction provides expedient access to aryl‐naphthaquinone atropisomers by the de novo construction of a benzene ring. The two functionalities of the catalyst, a tertiary phosphine (Lewis base) and a tertiary amine (Brønsted base), cooperatively enable this process with high regio‐ and enantioselectivities.  相似文献   

3.
The first enantioselective direct cross‐aldol reaction of α‐keto amides with aldehydes, mediated by a bifunctional ureidopeptide‐based Brønsted base catalyst, is described. The appropriate combination of a tertiary amine base and an aminal, and urea hydrogen‐bond donor groups in the catalyst structure promoted the exclusive generation of the α‐keto amide enolate which reacted with either non‐enolizable or enolizable aldehydes to produce highly enantioenriched polyoxygenated aldol adducts without side‐products resulting from dehydration, α‐keto amide self‐condensation, aldehyde enolization, and isotetronic acid formation.  相似文献   

4.
The first stereoselective organocatalyzed [3+2] cycloaddition reaction of donor‐acceptor cyclopropanes is presented. It is demonstrated that by applying an optically active bifunctional Brønsted base catalyst, racemic di‐cyano cyclopropylketones can be activated to undergo a stereoselective 1,3‐dipolar reaction with mono‐ and polysubstituted nitroolefins. The reaction affords functionalized cyclopentanes with three consecutive stereocenters in high yield and stereoselectivity. Based on the stereochemical outcome, a mechanism in which the organocatalyst activates both the donor‐acceptor cyclopropane and nitroolefin is proposed. Finally, chemoselective transformations of the cycloaddition products are demonstrated.  相似文献   

5.
A highly diastereoselective and enantioselective Brønsted acid catalyzed reductive condensation of N?H imines was developed. This reaction is catalyzed by a chiral disulfonimide (DSI), uses Hantzsch esters as a hydrogen source, and delivers useful C2‐symmetric secondary amines.  相似文献   

6.
A Brønsted acid‐catalyzed asymmetric Nazarov cyclization of acyclic α‐alkoxy dienones has been developed. The reaction offers access to chiral cyclopentenones in a highly enantioselective manner. The reaction is complementary to our previously reported Brønsted acid‐catalyzed electrocyclization reactions, which provided differently substituted optically active cyclopentenones with a fused tetrahydropyrane ring in good yields and with excellent enantioselectivities.  相似文献   

7.
Although catalytic asymmetric conjugate addition reactions have remarkably advanced over the last two decades, the application of less electrophilic α,β‐unsaturated carboxylic acid derivatives in this useful reaction manifold remains challenging. Herein, we report that α,β‐unsaturated 7‐azaindoline amides act as reactive electrophiles to participate in catalytic diastereo‐ and enantioselective vinylogous conjugate addition of γ‐butyrolactones in the presence of a cooperative catalyst comprising of a soft Lewis acid and a Brønsted base. Reactions mostly reached completion with as little as 1 mol % of catalyst loading to give the desired conjugate adducts in a highly stereoselective manner.  相似文献   

8.
A cooperative catalytic system established by the combination of an iron salt and a chiral Brønsted acid has proven to be effective in the asymmetric Friedel–Crafts alkylation of indoles with β‐aryl α′‐hydroxy enones. Good to excellent yields and enatioselectivities were observed for a variety of α′‐hydroxy enones and indoles, particularly for the β‐aryl α′‐hydroxy enones bearing an electron‐withdrawing group at the para position of the phenyl ring (up to 90 % yield and 91 % ee). The proton of the chiral Brønsted acid, the Lewis acid activation site, as well as the inherent basic site for the hydrogen‐bonding interaction of the Brønsted acid are responsible for the high catalytic activities and enantioselectivities of the title reaction. A possible reaction mechanism was proposed. The key catalytic species in the catalytic system, the phosphate salt of FeIII, which was thought to be responsible for the high activity and good enantioselectivity, was then confirmed by ESIMS studies.  相似文献   

9.
We report a direct catalytic asymmetric Mannich‐type addition of α,β‐unsaturated γ‐butyrolactam to α‐ethoxycarbonyl ketimines promoted by a soft Lewis acid/Brønsted base cooperative catalyst. A thiophosphinoyl group on the nitrogen of ketimines was crucial for both electrophilic activation and α‐addition of γ‐butyrolactams. The obtained aza‐Morita–Baylis–Hillman‐type products bear an α‐amino acid architecture with a tetra‐substituted stereogenic center.  相似文献   

10.
The three‐component [3+2+1] cycloaddition of epoxides, imines, and carbon monoxide to produce 1,3‐oxazinan‐4‐ones has been developed by using [HCo(CO)4] as the catalyst. The reaction occurs for a wide variety of imines and epoxides, under 60 bar of CO pressure at 50 °C, to produce 1,3‐oxazinan‐4‐ones with different substitution patterns in high yields, and provides an efficient and atom‐economic route to heterocycles from simple and readily available starting materials. A plausible mechanism involves [HCo(CO)4]‐induced ring‐opening of the epoxide, followed by sequential addition of carbon monoxide and the imine, and then ring closure to form the product accompanied by regeneration of [HCo(CO)4].  相似文献   

11.
The three‐component [3+2+1] cycloaddition of epoxides, imines, and carbon monoxide to produce 1,3‐oxazinan‐4‐ones has been developed by using [HCo(CO)4] as the catalyst. The reaction occurs for a wide variety of imines and epoxides, under 60 bar of CO pressure at 50 °C, to produce 1,3‐oxazinan‐4‐ones with different substitution patterns in high yields, and provides an efficient and atom‐economic route to heterocycles from simple and readily available starting materials. A plausible mechanism involves [HCo(CO)4]‐induced ring‐opening of the epoxide, followed by sequential addition of carbon monoxide and the imine, and then ring closure to form the product accompanied by regeneration of [HCo(CO)4].  相似文献   

12.
Carbophilic gold carbenes generated from the decomposition of α‐diazoesters show high reactivity towards enamides, leading to an unprecedented aza‐ene‐type reaction. The presence of 0.1 mol % of a chiral Brønsted acid co‐catalyst is sufficient to give synthetically relevant γ‐keto esters in excellent yields and selectivities (up to 99 % yield, 97 % ee ).  相似文献   

13.
The catalytic enantioselective synthesis of α‐fluorinated chiral tertiary alcohols from (hetero)aryl methyl ketones is described. The use of a bifunctional iminophosphorane (BIMP) superbase was found to facilitate direct aldol addition by providing the strong Brønsted basicity required for rapid aryl enolate formation. The new synthetic protocol is easy to perform and tolerates a broad range of functionalities and heterocycles with high enantioselectivity (up to >99:1 e.r.). Multi‐gram scalability has been demonstrated along with catalyst recovery and recycling. 1H NMR studies identified a 1400‐fold rate enhancement under BIMP catalysis, compared to the prior state‐of‐the‐art catalytic system. The utility of the aldol products has been highlighted with the synthesis of various enantioenriched building blocks and heterocycles, including 1,3‐aminoalcohol, 1,3‐diol, oxetane, and isoxazoline derivatives.  相似文献   

14.
A catalytic enantioselective synthesis of β-amino secondary amides was achieved using vinyl azides as the enamine-type nucleophile and chiral N-Tf phosphoramide as the chiral Brønsted acid catalyst through a five-step sequential transformation in one pot. The established sequential transformation involves an enantioselective [4+2] cycloaddition reaction of vinyl azides with N-acyl imines as the key stereo-determining step that is efficiently accelerated by a chiral N-Tf phosphoramide catalyst in a highly enantioselective manner in most cases. Further generation of the iminodiazonium ion intermediate through ring opening of the cycloaddition product and subsequent skeletal rearrangement involving Schmidt-type 1,2-aryl group migration followed by recyclization of the resulting nitrilium ion were also initiated by the same acid catalyst. Final acid hydrolysis of the recyclized products in the same pot gave rise to enantioenriched β-amino amides through C−C bond formation at the α-position of the secondary amides.  相似文献   

15.
Optically active vicinal diamines are versatile chiral building blocks in organic synthesis. A soft Lewis acid/hard Brønsted base cooperative catalyst allows for an efficient stereoselective coupling of N‐alkylidene‐α‐aminoacetonitrile and ketimines to access this class of compounds bearing consecutive tetra‐ and trisubstituted stereogenic centers. The strategic use of a soft Lewis basic thiophosphinoyl group for ketimines is the key to promoting the reaction, and aliphatic ketimines serve as suitable substrates with as little as 3 mol % catalyst loading.  相似文献   

16.
An anti‐selective Mannich reaction of aldehydes with N‐sulfonyl imines has been developed by using a 4‐hydroxypyrrolidine in combination with an external Brønsted acid. The catalyst design is based on three elements: the α‐substituent of the pyrrolidine, the 4‐hydroxy group, and the Brønsted acid, the combination of which is essential for high chemical and stereochemical efficiency. The reaction works with aromatic aldehyde‐derived imines, which have rarely been employed in previously reported enamine‐based anti‐Mannich reactions. Additionally, both N‐tosyl and N‐nosyl imines can be successfully used and the Mannich adducts can be easily reduced or oxidized, and after N‐deprotection the corresponding β‐amino acids and β‐amino alcohols can be obtained with good yields. The results also show that this ternary catalytic system may be practical in other enamine‐based reactions.  相似文献   

17.
《化学:亚洲杂志》2017,12(17):2271-2277
Development of inexpensive, easily prepared, non‐toxic, and efficient catalysts for the cycloaddition of CO2 with epoxides to synthesize five‐membered cyclic carbonates is a very attractive topic in the field of CO2 transformation. In this work, we conducted the first work on the cycloaddition of CO2 with epoxides to produce cyclic carbonates catalyzed by a binary catalyst system consisting of KI and boron phosphate (BPO4), which are both inexpensive and non‐toxic, and various corresponding cyclic carbonates could be produced with high yields (93–99 %) at 110 °C with a CO2 pressure of 4 MPa under solvent‐free conditions. In the BPO4/KI catalyst system, BPO4, a Brønsted and Lewis acid hybrid, played the role of activating the epoxy ring through the formation of hydrogen bonds with Brønsted acidic sites and the interaction with Lewis acidic sites simultaneously, and thus enhanced the activity of KI for the cycloaddition of CO2 with epoxides significantly. Additionally, the activity of the BPO4/KI catalyst system showed no noticeable decrease after being reused five times, indicating that the BPO4 was stable under the reaction conditions.  相似文献   

18.
The mechanism and enantioselectivity of the asymmetric conjugate addition of dimethyl malonate to β‐nitrostyrene catalyzed by cinchona alkaloid QD‐4 as organic catalyst are investigated using density function theory and ab initio methods. Six different reaction pathways, corresponding to the different approach modes of β‐nitrostyrene to dimethyl malonate are considered. Calculations indicate that the reaction process through a dual‐activation mechanism, in which the tertiary amine of cinchona alkaloid QD‐4 first works as a Brønsted base to promote the activation of the dimethyl malonate by deprotonation, and then, the hydroxyl group of QD‐4 acts as Brønsted acid to activate the β‐nitrostyrene. The rate‐determining step is the proton transfer process from the tertiary amine of QD‐4 to α‐carbon of β‐nitrostyrene. The comparison of the mechanisms and energies of the six reaction channels enable us to learn the fact that QD‐4 has good catalytic activities for the system, and implies C9? OH in QD‐4 may not be involved in the activation. These calculation results account well for the observations in experiments. © 2014 Wiley Periodicals, Inc.  相似文献   

19.
The catalytic asymmetric synthesis of both α‐substituted and α,α‐disubstituted (quaternary) β‐tetralones through direct α‐functionalization of the corresponding β‐tetralone precursor remains elusive. A designed Brønsted base‐squaramide bifunctional catalyst promotes the conjugate addition of either unsubstituted or α‐monosubstituted β‐tetralones to nitroalkenes. Under these reaction conditions, not only enolization, and thus functionalization, occurs at the α‐carbon atom of the β‐tetralone exclusively, but adducts including all‐carbon quaternary centers are also formed in highly diastereo‐ and enantioselective manner.  相似文献   

20.
An isothiourea‐catalyzed enantioselective Michael addition of aryl ester pronucleophiles to vinyl bis‐sulfones via C(1)‐ammonium enolate intermediates has been developed. This operationally simple method allows the base‐free functionalization of aryl esters to form α‐functionalized products containing two contiguous tertiary stereogenic centres in excellent yield and stereoselectivity (all ≥99:1 er). Key to the success of this methodology is the multifunctional role of the aryloxide, which operates as a leaving group, Brønsted base, Brønsted acid and Lewis base within the catalytic cycle. Comprehensive mechanistic studies, including variable time normalization analysis (VTNA) and isotopologue competition experiments, have been carried out. These studies have identified (i) orders of all reactants; (ii) a turnover‐limiting Michael addition step, (iii) product inhibition, (iv) the catalyst resting state and (v) catalyst deactivation through protonation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号