首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bredt’s rule holds a special place in the realm of physical organic chemistry, but its application to natural products chemistry—the field in which the rule was originally formulated—is not well defined. Herein, the use of olefin strain (OS) energy as a readily calculated predictor of the stability of natural products containing a bridgehead alkene is introduced. Schleyer first used OS energies to classify parent bridgehead alkenes into “isolable”, “observable”, and “unstable” classes. OS calculations on natural products, using contemporary forcefield methods, unequivocally predict all structurally verified bridgehead alkene natural products to be “isolable”. Thus, when one assigns the structure of a putative bridgehead alkene natural product, an OS in the “observable” or “unstable” ranges is a red flag for error.  相似文献   

2.
Bredt’s rule holds a special place in the realm of physical organic chemistry, but its application to natural products chemistry—the field in which the rule was originally formulated—is not well defined. Herein, the use of olefin strain (OS) energy as a readily calculated predictor of the stability of natural products containing a bridgehead alkene is introduced. Schleyer first used OS energies to classify parent bridgehead alkenes into “isolable”, “observable”, and “unstable” classes. OS calculations on natural products, using contemporary forcefield methods, unequivocally predict all structurally verified bridgehead alkene natural products to be “isolable”. Thus, when one assigns the structure of a putative bridgehead alkene natural product, an OS in the “observable” or “unstable” ranges is a red flag for error.  相似文献   

3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
Regio- and stereoselective formation of the 1,2-cis-furanosidic linkage has been in great demand for efficient synthesis of biologically active natural glycosides. In this study, we developed a regioselective and β-stereospecific d -/l -arabinofuranosylation promoted by a boronic acid catalyst under mild conditions. The glycosylations proceeded smoothly for a variety of diols, triols, and unprotected sugar acceptors to give the corresponding β-arabinofuranosides (β-Arbf) in high yields with complete β-stereoselectivity and high regioselectivity. The regioselectivity was completely reversed depending on the optical isomerism of the donor used and was predictable a priori using predictive models. Mechanistic studies based on DFT calculations revealed that the present glycosylation occurs through a highly dissociative concerted SNi mechanism. The usefulness of the glycosylation method was demonstrated by the chemical synthesis of trisaccharide structures of arabinogalactan fragments.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号