首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Triazene‐substituted arylboronic esters were prepared readily from the corresponding aryl magnesium derivatives and shown to function as a new class of donor–acceptor‐substituted coupling reagents. The selective functionalization of these aromatic derivatives led to a wide variety of terphenyl derivatives in which the original bifunctional unit (often further substituted with another functional group) formed the central aromatic ring. The functionalized terphenyl derivatives were formed in two efficient cross‐coupling steps from the triazene‐substituted boronic esters: Suzuki cross‐coupling with an aryl halide was followed by BF3?OEt2‐induced palladium‐catalyzed coupling of the diazonium salt generated in situ from the triazene with an arylboronic acid.  相似文献   

2.
A copper‐catalyzed aminoboration of bicyclic alkenes, including oxa‐ and azabenzonorbornadienes, has been developed. With this method, amine and boron moieties are simultaneously introduced at an olefin with exo selectivity. Subsequent stereospecific transformations of the boryl group can provide oxygen‐ and nitrogen‐rich cyclic molecules with motifs that may be found in natural products or pharmaceutically active compounds. Moreover, a catalytic asymmetric variant of this transformation was realized by using a copper complex with a chiral bisphosphine ligand, namely (R,R)‐Ph‐BPE.  相似文献   

3.
4.
Transition‐metal‐catalyzed difluoroalkylation of aromatics remains challenging despite the importance of difluoroalkylated arenes in medicinal chemistry. Herein, the first successful example of nickel‐catalyzed difluoroalkylation of aryl boronic acids is described. The reaction allows access to a variety of functionalized difluoromethyl bromides and chlorides, and paves the way to highly cost‐efficient synthesis of a wide range of difluoroalkylated arenes. The notable features of this protocol are its high generality, excellent functional‐group compatibility, low‐cost nickel‐catalyst, and practicality for gram‐scale production, thus providing a facile method for applications in drug discovery and development.  相似文献   

5.
6.
Non‐racemic chiral boronic esters are recognised as immensely valuable building blocks in modern organic synthesis. Their stereospecific transformation into a variety of functional groups—from amines and halides to arenes and alkynes—along with their air and moisture stability, has established them as an important target for asymmetric synthesis. Efforts towards the stereoselective synthesis of secondary and tertiary alkyl boronic esters have spanned over five decades and are underpinned by a wealth of reactivity platforms, drawing on the unique and varied reactivity of boron. This Review summarizes strategies for the asymmetric synthesis of alkyl boronic esters, from the seminal hydroboration methods of H. C. Brown to the current state of the art.  相似文献   

7.
8.
9.
10.
Enantioenriched secondary and tertiary alkyl pinacolboronic esters undergo enantiospecific deborylative alkynylation through a Zweifel‐type alkenylation followed by a 1,2‐elimination reaction. The process involves use of α‐lithio vinyl bromide or vinyl carbamate species, for which application to Zweifel‐type reactions has not previously been explored. The resulting functionalized 1,1‐disubstituted alkenes undergo facile base‐mediated elimination to generate terminal alkyne products in high yield and excellent levels of enantiospecificity over a wide range of pinacolboronic ester substrates. Furthermore, along with terminal alkynes, internal and silyl‐protected alkynes can be formed by simply introducing a suitable carbon‐ or silicon‐based electrophile after the base‐mediated 1,2‐elimination reaction.  相似文献   

11.
12.
13.
14.
15.
The alkylation of arenes is an essential synthetic step of interest not only from the academic point of view but also in the bulk chemical industry. Despite its limitations, the Friedel–Crafts reaction is still the method of choice for most of the arene alkylation processes. Thus, the development of new strategies to synthesize alkyl arenes is a highly desirable goal, and herein, we present an alternative method to those conventional reactions. Particularly, a simple protocol for the direct C?H alkylation of unbiased arenes with alkylboronic acids in the presence of Mn(OAc)3?2H2O is reported. Primary or secondary unactivated alkylboronic acids served as alkylating agents for the direct functionalization of representative polyaromatic hydrocarbons (PAHs) or benzene. The results are consistent with a free‐radical mechanism.  相似文献   

16.
17.
18.
19.
Lewis base adducts of tetra‐alkoxy diboron compounds, in particular bis(pinacolato)diboron (B2pin2), have been proposed as the active source of nucleophilic boryl species in metal‐free borylation reactions. We report the isolation and detailed structural characterization (by solid‐state and solution NMR spectroscopy and X‐ray crystallography) of a series of anionic adducts of B2pin2 with hard Lewis bases, such as alkoxides and fluoride. The study was extended to alternative Lewis bases, such as acetate, and other diboron reagents. The B(sp2)–B(sp3) adducts exhibit two distinct boron environments in the solid‐state and solution NMR spectra, except for [(4‐tBuC6H4O)B2pin2]?, which shows rapid site exchange in solution. DFT calculations were performed to analyze the stability of the adducts with respect to dissociation. Stoichiometric reaction of the isolated adducts with two representative series of organic electrophiles—namely, aryl halides and diazonium salts—demonstrate the relative reactivities of the anionic diboron compounds as nucleophilic boryl anion sources.  相似文献   

20.
O‐Glycosylation is one of the most important post‐translational modifications of proteins. The attachment of carbohydrates to the peptide backbone influences the conformation as well as the solubility of the conjugates and can even be essential for binding to specific ligands in cell–cell interactions or for active transport over membranes. This makes glycopeptides an interesting class of compounds for medical applications. To enhance the long‐term availability of these molecules in vivo, the stabilization of the glycosidic bond between the amino acid residue and the carbohydrate is of interest. The described modular approach affords β‐linked C‐glycosyl amino acids by a sequence of Petasis olefination of glyconolactones, stereoselective hydroboration and a mild B‐alkyl‐Suzuki coupling reaction. The coupling products were transformed to C‐glycosyl amino acid building‐blocks suitable for solid‐phase synthesis and successfully incorporated into a partial sequence of the tumor‐associated MUC1‐glycopeptide. The resulting C‐glycopeptides are candidates for the development of long‐term stable mimics of O‐glycopeptide vaccines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号