首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The first chemical synthesis of the complete protective O‐antigen of a human‐disease‐causing pathogenic bacterium is described. The synthesis involved a protecting‐group strategy that facilitated the regioselectivity of the key transformations, stereoselective glycosylation reactions, and enabled the one‐step global deprotection of the completely assembled, fully protected, phosphorylated hexasaccharide by hydrogenation/hydrogenolysis. The final amino‐group‐functionalized, linker‐equipped antigen was obtained in a form ready for conjugation to suitable carriers, for example, proteins, to yield immunogens.  相似文献   

2.
The chemical synthesis of a bisecting N‐acetylglucosamine (GlcNAc)‐containing N‐glycan was achieved by a convergent synthetic route through [4+2] and [6+2] glycosylations. This synthetic route reduced the number of reaction steps, although the key glycosylations were challenging in terms of yields and selectivities owing to steric hindrance at the glycosylation site and a lack of neighboring group participation. The yields of these glycosylations were enhanced by stabilizing the oxocarbenium ion intermediate through ether coordination. Glycosyl donor protecting groups were explored in an effort to realize perfect α selectivity by manipulating remote participation. The simultaneous glycosylations of a tetrasaccharide with two disaccharides was investigated to efficiently construct a bisecting GlcNAc‐containing N‐glycan.  相似文献   

3.
The development of glycoconjugate vaccines against Helicobacter pylori is challenging. An exact epitope of the H. pylori lipo‐polysaccharide (LPS) O‐antigens that contain Lewis determinant oligosaccharides and unique dd ‐heptoglycans has not yet been identified. Reported here is the first total synthesis of H. pylori serotype O6 tridecasaccharide O‐antigen containing a terminal Ley tetrasaccharide, a unique α‐(1→3)‐, α‐(1→6)‐, and α‐(1→2)‐linked heptoglycan, and a β‐d ‐galactose connector, by an [(2×1)+(3+8)] assembly sequence. Seven oligosaccharides covering different portions of the entire O‐antigen were prepared for immunological investigations with a particular focus on elucidation of the roles of the dd ‐heptoglycan and Ley tetrasaccharide. Glycan microarray analysis of sera from rabbits immunized with isolated serotype O6 LPS revealed a humoral immune response to the α‐(1→3)‐linked heptoglycan, a key motif for designing glycoconjugate vaccines for H. pylori serotype O6.  相似文献   

4.
The synthesis and biological evaluation of the Forssman antigen pentasaccharide and derivatives thereof by using a one‐pot glycosylation and polymer‐assisted deprotection is described. The Forssman antigen pentasaccharide, composed of GalNAcα(1,3)GalNAcβ(1,3)Galα(1,4)Galβ(1,4)Glc, was recently identified as a ligand of the lectin SLL‐2 isolated from an octocoral Sinularia lochmodes. The chemo‐ and α‐selective glycosylation of a thiogalactoside with a hemiacetal donor by using a mixture of Tf2O, TTBP and Ph2SO, followed by activation of the remaining thioglycoside, provided the trisaccharide at the reducing end in a one‐pot procedure. The pentasaccharide was prepared by the α‐selective glycosylation of the N‐Troc‐protected (Troc=2,2,2‐trichloroethoxycarbonyl) thioglycoside with a 2‐azide‐1‐hydroxyl glycosyl donor, followed by glycosidation of the resulting disaccharide at the C3 hydroxyl group of the trisaccharide acceptor in a one‐pot process. We next applied the one‐pot glycosylation method to the synthesis of pentasaccharides in which the galactosamine units were partially and fully replaced by galactose units. Among the three possible pentasaccharides, Galα(1,3)GalNAc and Galα(1,3)Gal derivatives were successfully prepared by the established method. An assay of the binding of the synthetic oligosaccharides to a fluorescent‐labeled SLL‐2 revealed that the NHAc substituents and the length of the oligosaccharide chain were both important for the binding of the oligosaccharide to SLL‐2. The inhibition effect of the oligosaccharide relative to the morphological changes of Symbiodinium by SLL‐2, was comparable to their binding affinity to SLL‐2. In addition, we fortuitously found that the synthetic Forssman antigen pentasaccharide directly promotes a morphological change in Symbiodinium. These results strongly indicate that the Forssman antigen also functions as a chemical mediator of Symbiodinium.  相似文献   

5.
The synthesis of α‐sialosides is one of the most difficult reactions in carbohydrate chemistry and is considered to be both a thermodynamically and kinetically disfavored process. The use of acetonitrile as a solvent is an effective solution for the α‐selective glycosidation of N‐acetyl sialic acids. In this report, we report on the α‐glycosidation of partially unprotected N‐acetyl and N‐glycolyl donors in the absence of a nitrile solvent effect. The 9‐O‐benzyl‐N‐acetylthiosialoside underwent glycosidation in CH2Cl2 with a good α‐selectivity. On the other hand, the 4,7,8‐O‐triacetyl‐9‐O‐benzyl‐N‐acetylthiosialoside was converted to β‐sialoside as a major product under the same reaction conditions. The results indicate that the O‐acetyl protection of the sialyl donor was a major factor in reducing the α‐selectivity of sialylation. After tuning of the protecting groups of the hydroxy groups at the 4,7,8 position on the sialyl donor, we found that the 9‐O‐benzyl‐4‐O‐chloroacetyl‐N‐acetylthiosialoside underwent sialylation with excellent α‐selectivity in CH2Cl2. To demonstrate the utility of the method, straightforward synthesis of α(2,9) disialosides containing N‐acetyl and/or N‐glycolyl groups was achieved by using the two N‐acetyl and N‐glycolyl sialyl donors.  相似文献   

6.
A scalable approach towards high‐yielding and (stereo)selective glycosyl donors of the 2‐ulosonic acid Kdo (3‐deoxy‐D ‐manno‐oct‐2‐ulosonic acid) is a fundamental requirement for the development of vaccines against Gram‐negative bacteria. Herein, we disclose a short synthetic route to 3‐iodo Kdo fluoride donors from Kdo glycal esters that enable efficient α‐specific glycosylations and significantly suppress the elimination side reaction. The potency of these donors is demonstrated in a straightforward, six‐step synthesis of a branched Chlamydia‐related Kdo‐trisaccharide ligand without the need for protecting groups at the Kdo glycosyl acceptor. The approach was further extended to include sequential iteration of the basic concept to produce the linear Chlamydia‐specific α‐Kdo‐(2→8)‐α‐Kdo‐(2→4)‐α‐Kdo trisaccharide in a good overall yield.  相似文献   

7.
The mini fungal lectin PhoSL was recombinantly produced and characterized. Despite a length of only 40 amino acids, PhoSL exclusively recognizes N‐glycans with α1,6‐linked fucose. Core fucosylation influences the intrinsic properties and bioactivities of mammalian N‐glycoproteins and its level is linked to various cancers. Thus, PhoSL serves as a promising tool for glycoprofiling. Without structural precedence, the crystal structure was solved using the zinc anomalous signal, and revealed an interlaced trimer creating a novel protein fold termed β‐prism III. Three biantennary core‐fucosylated N‐glycan azides of 8 to 12 sugars were cocrystallized with PhoSL. The resulting highly resolved structures gave a detailed view on how the exclusive recognition of α1,6‐fucosylated N‐glycans by such a small protein occurs. This work also provided a protein consensus motif for the observed specificity as well as a glimpse into N‐glycan flexibility upon binding.  相似文献   

8.
Combinatorial antitumor therapies using different combinations of drugs and genes are emerging as promising ways to overcome drug resistance, which is a major cause for the failure of cancer treatment. However, dramatic pharmacokinetic differences of drugs greatly impede their combined use in cancer therapy, raising the demand for drug delivery systems (DDSs) for tumor treatment. By employing fluorescent dithiomaleimide (DTM) as a linker, we conjugate two paclitaxel (PTX) molecules with a floxuridine (FdU)‐integrated antisense oligonucleotide (termed chemogene) to form a drug–chemogene conjugate. This PTX–chemogene conjugate can self‐assemble into a spherical nucleic acid (SNA)‐like micellular nanoparticle as a carrier‐free DDS, which knocks down the expression of P‐glycoprotein and subsequently releases FdU and PTX to exert a synergistic antitumor effect and greatly inhibit tumor growth.  相似文献   

9.
The total synthesis of mixed‐sequence alginate oligosaccharides, featuring both β‐D ‐mannuronic acid (M) and α‐L ‐guluronic acid (G), is reported for the first time. A set of GM, GMG, GMGM, GMGMG, GMGMGM, GMGMGMG, and GMGGMG alginates was assembled using GM building blocks, having a guluronic acid acceptor part and a mannuronic acid donor side to allow the fully stereoselective construction of the cis‐glycosidic linkages. It was found that the nature of the reducing‐end anomeric center, which is ten atoms away from the reacting alcohol group in the key disaccharide acceptor, had a tremendous effect on the efficiency with which the building blocks were united. This chiral center determines the overall shape of the acceptor and it is revealed that the conformational flexibility of the acceptor is an all‐important factor in determining the outcome of a glycosylation reaction.  相似文献   

10.
A microwave‐assisted glycosylation method was developed for efficient synthesis of oligosaccharides. Di‐functional AB monomers, 2,3,4‐tri‐O‐acetyl‐α‐d ‐galactopyranosyl bromide ( 3a ) and 2,3,4‐tri‐O‐acetyl‐α‐d ‐glucopyranosyl bromide ( 3b ) were designed and synthesized as weakly reactive monomers to avoid unwanted glycosylation or degradation during preparation and storage. The glycosylations of these monomers gave low conversions and low molecular weight oligosaccharides at rt, reflux, and under low microwave energy irradiation. However, the glycosylation became very effective when high microwave energy was applied, giving 100% conversion and producing oligosaccharides with Mn = 4.76 kDa for 3a and Mn = 4.05 kDa for 3b. The acetylated oligosaccharides were further subjected to deprotection for structural analysis, which indicated the oligosaccharides contain predominantly linear β‐(1,6)‐glycosyl linkages. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 3693–3699  相似文献   

11.
12.
Acute myeloid leukemia (AML), which is the most common acute adult leukemia and the second most common pediatric leukemia, still has a poor prognosis. Human C‐type lectin‐like molecule‐1 (CLL1) is a recently identified myeloid lineage restricted cell surface marker, which is overexpressed in over 90 % of AML patient myeloid blasts and in leukemic stem cells. Here, we describe the synthesis of a novel bispecific antibody, αCLL1‐αCD3, using the genetically encoded unnatural amino acid, p‐acetylphenylalanine. The resulting αCLL1‐αCD3 recruits cytotoxic T cells to CLL1 positive cells, and demonstrates potent and selective cytotoxicity against several human AML cell lines and primary AML patient derived cells in vitro. Moreover, αCLL1‐αCD3 treatment completely eliminates established tumors in an U937 AML cell line xenograft model. These results validate the clinical potential of CLL1 as an AML‐specific antigen for the generation of a novel immunotherapeutic for AML.  相似文献   

13.
14.
15.
A glyco‐array platform has been developed, in which glycans are attached to plasmonic nanoparticles through strain‐promoted azide‐alkyne cycloaddition. Glycan–protein binding events can then be detected in a label‐free manner employing surface‐enhanced Raman spectroscopy (SERS). As proof of concept, we have analyzed the binding of Gal1, Gal3, and influenza hemagglutinins (HAs) to various glycans and demonstrated that binding partners can be identified with high confidence. The attraction of SERS for optical sensing is that it can provide unique spectral signatures for glycan–protein complexes, confirm identity through statistical validation, and minimizes false positive results common to indirect methods. Furthermore, SERS is very sensitive and has multiplexing capabilities thereby allowing the simultaneous detection of multiple analytes.  相似文献   

16.
Controlled acid hydrolysis of polymeric chondroitin sulfate of bovine origin afforded in good yield a basic disaccharide fragment that was used for the first time as a starting material for the expeditious preparation of a set of building blocks that in turn act as versatile synthons for the efficient and stereocontrolled construction of a collection of size‐defined chondroitin oligomers (from di‐ to octasaccharides). This step economy process allows their preparation as reducing species, fitted with a fluorophore, or as biotinylated conjugates; all useful tools for the preparation of microarrays, or as probes for the study of the biosynthesis of chondroitin sulfate.  相似文献   

17.
A Lewis(y) (Le(y)) tetrasaccharide modified by an artificial aminopropyl spacer was synthesized by a highly convergent approach that employed a levulinoyl ester and a 9-fluorenylmethoxycarbonate for temporary protection of the hydroxy groups and a trichloroethyloxycarbonyl as an amino protecting group. The artificial aminopropyl moiety was modified by a thioacetyl group, which allowed efficient conjugation to keyhole limpet hemocyanin (KLH) modified by electrophilic 4-(maleimidomethyl)cyclohexane-1-carboxylate (MI). Mice were immunized with the KLH-MI-Le(y) antigen. A detailed analysis of sera by ELISA established that a strong immunoglobulin G (IgG) antibody response was elicited against the linker region. The use of a smaller and more flexible 3-(bromoacetamido)propionate for the attachment of Le(y) to KLH not only reduced the IgG antibody response against the linker but also led to a significantly improved immune response against the Le(y) antigen. This study shows that highly antigenic linkers suppress antibody responses to weak antigens such as self-antigens.  相似文献   

18.
The first total synthesis of the branched oligosaccharide OSE‐1 of Mycobacterium gordonae (strain 990) is reported. An intramolecular aglycon delivery approach was used for constructing the desymmetrized 1,1′‐α,α‐linked trehalose moiety. A [3+2] glycosylation of the trisaccharide donor and trehalose acceptor furnished the right hand side pentasaccharide. Regioselective O3 glycosylation of L ‐rhamnosyl 2,3‐diol allowed expedient synthesis of the left hand side tetrasaccharide. The nonasaccharide was assembled in a highly convergent fashion through a [4+5] glycosylation.  相似文献   

19.
Blockade of the protein–protein interaction between the transmembrane protein programmed cell death protein 1 (PD‐1) and its ligand PD‐L1 has emerged as a promising immunotherapy for treating cancers. Using the technology of mirror‐image phage display, we developed the first hydrolysis‐resistant D ‐peptide antagonists to target the PD‐1/PD‐L1 pathway. The optimized compound DPPA‐1 could bind PD‐L1 at an affinity of 0.51 μM in vitro. A blockade assay at the cellular level and tumor‐bearing mice experiments indicated that DPPA‐1 could also effectively disrupt the PD‐1/PD‐L1 interaction in vivo. Thus D ‐peptide antagonists may provide novel low‐molecular‐weight drug candidates for cancer immunotherapy.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号