首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The use of Oxone and a palladium(II) catalyst enables the efficient allylic C H oxidation of sterically hindered α‐quaternary lactams which are unreactive under known conditions for similar transformations. This simple, safe, and effective system for C H activation allows for unusual tunable selectivity between a two‐electron oxidation to the allylic acetates and a four‐electron oxidation to the corresponding enals, with the dominant product depending on the presence or absence of water. The versatile synthetic utility of both the allylic acetate and enal products accessible through this methodology is also demonstrated.  相似文献   

2.
The enantioselective synthesis of isochroman motifs has been accomplished by palladium(II)‐catalyzed allylic C−H oxidation from terminal olefin precursors. Critical to the success of this goal was the development and utilization of a novel chiral aryl sulfoxide‐oxazoline (ArSOX) ligand. The allylic C−H oxidation reaction proceeds with the broadest scope and highest levels of asymmetric induction reported to date (avg. 92 % ee, 13 examples with greater than 90 % ee).  相似文献   

3.
Photoredox‐catalyzed isomerization of γ‐carbonyl‐substituted allylic alcohols to their corresponding carbonyl compounds was achieved for the first time by C?H bond activation. This catalytic redox‐neutral process resulted in the synthesis of 1,4‐dicarbonyl compounds. Notably, allylic alcohols bearing tetrasubstituted olefins can also be transformed into their corresponding carbonyl compounds. Density functional theory calculations show that the carbonyl group at the γ‐position of allylic alcohols are beneficial to the formation of their corresponding allylic alcohol radicals with high vertical electron affinity, which contributes to the completion of the photoredox catalytic cycle.  相似文献   

4.
Herein, we developed a Ru(II)(BPGA) complex that could be used to catalyze chemo‐ and site‐selective C?H oxidation. The described ruthenium complex was designed by replacing one pyridyl group on tris(2‐pyridylmethyl)amine with an electron‐donating amide ligand that was critical for promoting this type of reaction. More importantly, higher reactivities and better chemo‐, and site‐selectivities were observed for reactions using the cis‐ruthenium complex rather than the trans‐one. This reaction could be used to convert sterically less hindered methyne and/or methylene C?H bonds of a various organic substrates, including natural products, into valuable alcohol or ketone products.  相似文献   

5.
Predictability is a key requirement to encompass late‐stage C?H functionalization in synthetic routes. However, prediction (and control) of reaction selectivity is usually challenging, especially for complex substrate structures and elusive transformations such as remote C(sp3)?H oxidation, as it requires distinguishing a specific C?H bond from many others with similar reactivity. Developed here is a strategy for predictable, remote C?H oxidation that entails substrate binding to a supramolecular Mn or Fe catalyst followed by elucidation of the conformation of the host‐guest adduct by NMR analysis. These analyses indicate which remote C?H bonds are suitably oriented for the oxidation before carrying out the reaction, enabling prediction of site selectivity. This strategy was applied to late‐stage C(sp3)?H oxidation of amino‐steroids at C15 (or C16) positions, with a selectivity tunable by modification of catalyst chirality and metal.  相似文献   

6.
The chemical functionalization of hydrogenated graphene can modify its physical properties and lead to better processability. Herein, we describe the chemical functionalization of hydrogenated graphene through a dehydrogenative cross‐coupling reaction between an allylic C?H bond and the α‐C?H bond of tetrahydrothiophen‐3‐one using Cu(OTf)2 as the catalyst and DDQ as the oxidant. The chemical functionalization was confirmed by X‐ray photoelectron spectroscopy and Fourier transform infrared spectroscopy and visualized by scanning electron microscopy. The functionalized hydrogenated graphene material demonstrated improved dispersion stability in water, bringing new quality to the elusive hydrogenated graphene (graphane) materials. Hydrogenated graphene provides broad possibilities for chemical modifications owing to its reactivity.  相似文献   

7.
Recent breakthroughs have proved that direct palladium(II)‐catalyzed allylic C? H alkylation can be achieved. This new procedure shows that the inherent requirement for a leaving group in the Tsuji–Trost palladium‐catalyzed allylic alkylation can be lifted. These initial reports hold great promise for the development of allylic C? H alkylation into a widely applicable methodology, thus providing a means to enhance synthetic efficiency in these reactions.  相似文献   

8.
Compared to the biological world's rich chemistry for functionalizing carbon, enzymatic transformations of the heavier homologue silicon are rare. We report that a wild‐type cytochrome P450 monooxygenase (P450BM3 from Bacillus megaterium, CYP102A1) has promiscuous activity for oxidation of hydrosilanes to give silanols. Directed evolution was applied to enhance this non‐native activity and create a highly efficient catalyst for selective silane oxidation under mild conditions with oxygen as the terminal oxidant. The evolved enzyme leaves C?H bonds present in the silane substrates untouched, and this biotransformation does not lead to disiloxane formation, a common problem in silanol syntheses. Computational studies reveal that catalysis proceeds through hydrogen atom abstraction followed by radical rebound, as observed in the native C?H hydroxylation mechanism of the P450 enzyme. This enzymatic silane oxidation extends nature's impressive catalytic repertoire.  相似文献   

9.
Herein, we report the redox‐neutral, intermolecular, and highly branch‐selective amidation of allylic C?H bonds enabled by Cp*IrIII catalysis. A variety of readily available carboxylic acids were converted into the corresponding dioxazolones and efficiently coupled with terminal and internal olefins in high yields and selectivities. Mechanistic investigations support the formation of a nucleophilic IrIII–allyl intermediate rather than the direct insertion of an Ir–nitrenoid species into the allylic C?H bond.  相似文献   

10.
Transition metal catalyzed C?H phosphorylation remains an unsolved challenge. Reported methods are generally limited in scope and require stoichiometric silver salts as oxidants. Reported here is an electrochemically driven RhIII‐catalyzed aryl C?H phosphorylation reaction that proceeds through H2 evolution, obviating the need for stoichiometric metal oxidants. The method is compatible with a variety of aryl C?H and P?H coupling partners and particularly useful for synthesizing triarylphosphine oxides from diarylphosphine oxides, which are often difficult coupling partners for transition metal catalyzed C?H phosphorylation reactions. Experimental results suggest that the mechanism responsible for the C?P bond formation involves an oxidation‐induced reductive elimination process.  相似文献   

11.
A non‐hygroscopic tetraphenylborate salt of N‐methylmorpholine‐N‐oxide (NMO) is reported (NMO ? TPB), which modulates the standard Ley–Griffith oxidation such that benzylic and allylic alcohols are oxidised selectively. An attractive feature of this new protocol is that anhydrous conditions are not required for this selective tetra‐n‐propylammonium perruthenate (TPAP) oxidation, superseding the requirement of molecular sieves.  相似文献   

12.
A novel nano‐fibrillated mesoporous carbon (IFMC) was successfully prepared via carbonization of the ionic liquid 1‐methyl‐3‐phenethyl‐1H‐imidazolium hydrogen sulfate ( 1 ) in the presence of SBA‐15. The material was shown to be an efficient and unique support for the palladium nanoparticle (PdNP) catalyst Pd@IFMC ( 2 ) in aerobic oxidation of heterocyclic, benzylic, and heteroatom containing alcohols on pure water at temperatures as low as 40 °C for the first time and giving almost consistent activities and selectivities within more than six reaction runs. The catalyst has also been employed as an effective catalyst for the selective oxidation of aliphatic and allylic alcohols at 70–80 °C. The materials were characterized by X‐ray photoelectron spectroscopy (XPS), N2 adsorption–desorption analysis, transmission electron microscopy (TEM), and electron tomography (ET). Our compelling XPS and ET studies showed that higher activity of 2 compared to Pd@CMK‐3 and Pd/C in the aerobic oxidation of alcohols on water might be due to the presence of nitrogen functionalities inside the carbon structure and also the fibrous nature of our materials. The presence of a nitrogen heteroatom in the carboneous framework might also be responsible for the relatively uniform and nearly atomic‐scale distribution of PdNPs throughout the mesoporous structure and the inhibition of Pd agglomeration during the reaction, resulting in high durability, high stability, and recycling characteristics of 2 . This effect was clearly confirmed by comparing the TEM images of the recovered 2 and Pd@CMK‐3.  相似文献   

13.
The efficient selective oxidation and functionalization of C? H bonds with molecular oxygen and a copper catalyst to prepare the corresponding ketones was achieved with ethyl chloroacetate as a promoter. In this transformation, various substituted N‐heterocyclic compounds were well tolerated. Preliminary mechanistic investigations indicated that organic radical species were involved in the overall process. The N‐heterocyclic compounds and ethyl chloroacetate work synergistically to activate C? H bonds in the methylene group, which results in the easy generation of free radical intermediates, thus leading to the corresponding ketones in good yields.  相似文献   

14.
Among halogenated aromatics, iodoarenes are unique in their ability to produce the bench‐stable halogen(III) form. Earlier, such iodine(III) centers were shown to enable C?H functionalization ortho to iodine via halogen‐centered rearrangement. The broader implications of this phenomenon are explored by testing the extent of an unusual iodane‐directed para C?H benzylation, as well as by developing an efficient C?H coupling with sulfonyl‐substituted allylic silanes. Through the combination of the one‐shot nature of the coupling event and the iodine retention, multisubstituted arenes can be prepared by sequentially engaging up to three aromatic C?H sites. This type of iodine‐based iterative synthesis will serve as a tool for the formation of value‐added aromatic cores.  相似文献   

15.
The first enantioselective α‐allylation of aldehydes with terminal alkenes has been realized by combining asymmetric counteranion catalysis and palladium‐catalyzed allylic C? H activation. This method can tolerate a wide scope of α‐branched aromatic aldehydes and terminal alkenes, thus affording allylation products in high yields and with good to excellent levels of enantioselectivity. Importantly, the findings suggest a new strategy for the future creation of enantioselective C? H/C? H coupling reactions.  相似文献   

16.
To show the synthetic utility of the catalytic C?C activation of less strained substrates, described here are the collective and concise syntheses of the natural products (?)‐microthecaline A, (?)‐leubehanol, (+)‐pseudopteroxazole, (+)‐seco‐pseudopteroxazole, pseudopterosin A–F and G—J aglycones, and (+)‐heritonin. The key step in these syntheses involve a Rh‐catalyzed C?C/C?H activation cascade of 3‐arylcyclopentanones, which provides a rapid and enantioselective route to access the polysubstituted tetrahydronaphthalene cores presented in these natural products. Other important features include 1) the direct C?H amination of the tetralone substrate in the synthesis of (?)‐microthecaline A, 2) the use of phosphoric acid to enhance efficiency and regioselectivity for problematic cyclopentanone substrates in the C?C activation reactions, and 3) the direct conversion of serrulatane into amphilectane diterpenes by an allylic cyclodehydrogenation coupling.  相似文献   

17.
The site‐selective C?H oxidation of unactivated positions in aliphatic ammonium chains poses a tremendous synthetic challenge, for which a solution has not yet been found. Here, we report the preferential oxidation of the strongly deactivated C3/C4 positions of aliphatic ammonium substrates by employing a novel supramolecular catalyst. This chimeric catalyst was synthesized by linking the well‐explored catalytic moiety Fe(pdp) to an alkyl ammonium binding molecular tweezer. The results highlight the vast potential of overriding the intrinsic reactivity in chemical reactions by guiding catalysis using supramolecular host structures that enable a precise orientation of the substrates.  相似文献   

18.
Regio‐ and stereoselective distal allylic/benzylic C?H functionalization of allyl and benzyl silyl ethers was achieved using rhodium(II) carbenes derived from N‐sulfonyltriazoles and aryldiazoacetates as carbene precursors. The bulky rhodium carbenes led to highly site‐selective functionalization of less activated allylic and benzylic C?H bonds even in the presence of electronically preferred C?H bonds located α to oxygen. The dirhodium catalyst Rh2(S‐NTTL)4 is the most effective chiral catalyst for triazole‐derived carbene transformations, whereas Rh2(S‐TPPTTL)4 works best for carbenes derived from aryldiazoacetates. The reactions afford a variety of δ‐functionalized allyl silyl ethers with high diastereo‐ and enantioselectivity. The utility of the present method was demonstrated by its application to the synthesis of a 3,4‐disubstituted l ‐proline scaffold.  相似文献   

19.
Mononuclear nonheme high‐spin (S=2) iron(IV)–oxo species have been identified as the key intermediates responsible for the C?H bond activation of organic substrates in nonheme iron enzymatic reactions. Herein we report that the C?H bond activation of hydrocarbons by a synthetic mononuclear nonheme high‐spin (S=2) iron(IV)–oxo complex occurs through an oxygen non‐rebound mechanism, as previously demonstrated in the C?H bond activation by nonheme intermediate (S=1) iron(IV)–oxo complexes. We also report that C?H bond activation is preferred over C=C epoxidation in the oxidation of cyclohexene by the nonheme high‐spin (HS) and intermediate‐spin (IS) iron(IV)–oxo complexes, whereas the C=C double bond epoxidation becomes a preferred pathway in the oxidation of deuterated cyclohexene by the nonheme HS and IS iron(IV)–oxo complexes. In the epoxidation of styrene derivatives, the HS and IS iron(IV) oxo complexes are found to have similar electrophilic characters.  相似文献   

20.
A mild and selective C(sp3)?H aerobic oxidation enabled by decatungstate photocatalysis has been developed. The reaction can be significantly improved in a microflow reactor enabling the safe use of oxygen and enhanced irradiation of the reaction mixture. Our method allows for the oxidation of both activated and unactivated C?H bonds (30 examples). The ability to selectively oxidize natural scaffolds, such as (?)‐ambroxide, pregnenolone acetate, (+)‐sclareolide, and artemisinin, exemplifies the utility of this new method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号