首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many peptides and proteins with large sequences and structural differences self‐assemble into disease‐causing amyloids that share very similar biochemical and biophysical characteristics, which may contribute to their cross‐interaction. Here, we demonstrate how the self‐assembled, cyclic d,l ‐α‐peptide CP‐2 , which has similar structural and functional properties to those of amyloids, acts as a generic inhibitor of the Parkinson′s disease associated α‐synuclein (α‐syn) aggregation to toxic oligomers by an ?off‐pathway“ mechanism. We show that CP‐2 interacts with the N‐terminal and the non‐amyloid‐β component region of α‐syn, which are responsible for α‐syn′s membrane intercalation and self‐assembly, thus changing the overall conformation of α‐syn. CP‐2 also remodels α‐syn fibrils to nontoxic amorphous species and permeates cells through endosomes/lysosomes to reduce the accumulation and toxicity of intracellular α‐syn in neuronal cells overexpressing α‐syn. Our studies suggest that targeting the common structural conformation of amyloids may be a promising approach for developing new therapeutics for amyloidogenic diseases.  相似文献   

2.
Protein‐mimics are of great interest for their structure, stability, and properties. We are interested in the synthesis of protein‐mimics containing triazole linkages as peptide‐bond surrogate by topochemical azide‐alkyne cycloaddition (TAAC) polymerization of azide‐ and alkyne‐modified peptides. The rationally designed dipeptide N3‐CH2CO‐Phe‐NHCH2CCH ( 1 ) crystallized in a parallel β‐sheet arrangement and are head‐to‐tail aligned in a direction perpendicular to the β‐sheet‐direction. Upon heating, crystals of 1 underwent single‐crystal‐to‐single‐crystal polymerization forming a triazole‐linked pseudoprotein with Gly‐Phe‐Gly repeats. During TAAC polymerization, the pseudoprotein evolved as helical chains. These helical chains are laterally assembled by backbone hydrogen bonding in a direction perpendicular to the helical axis to form helical sheets. This interesting helical‐sheet orientation in the crystal resembles the cross‐α‐amyloids, where α‐helices are arranged laterally as sheets.  相似文献   

3.
Amyloids are characterized by their capacity to bind Congo red (CR), one of the most used amyloid‐specific dyes. The structural features of CR binding were unknown for years, mainly because of the lack of amyloid structures solved at high resolution. In the last few years, solid‐state NMR spectroscopy enabled the determination of the structural features of amyloids, such as the HET‐s prion forming domain (HET‐s PFD), which also has recently been used to determine the amyloid–CR interface at atomic resolution. Herein, we combine spectroscopic data with molecular docking, molecular dynamics, and excitonic quantum/molecular mechanics calculations to examine and rationalize CR binding to amyloids. In contrast to a previous assumption on the binding mode, our results suggest that CR binding to the HET‐s PFD involves a cooperative process entailing the formation of a complex with 1:1 stoichiometry. This provides a molecular basis to explain the bathochromic shift in the maximal absorbance wavelength when CR is bound to amyloids.  相似文献   

4.
CCG triplet repeats can fold into tetraplex structures, which are associated with the expansion of (CCG)n trinucleotide sequences in certain neurological diseases. These structures are stabilized by intertwining i‐motifs. However, the structural basis for tetraplex i‐motif formation in CCG triplet repeats remains largely unknown. We report the first crystal structure of a CCG‐repeat sequence, which shows that two dT(CCG)3A strands can associate to form a tetraplex structure with an i‐motif core containing four C:C+ pairs flanked by two G:G homopurine base pairs as a structural motif. The tetraplex core is attached to a short parallel‐stranded duplex. Each hairpin itself contains a central CCG loop in which the nucleotides are flipped out and stabilized by stacking interactions. The helical twists between adjacent cytosine residues of this structure in the i‐motif core have an average value of 30°, which is greater than those previously reported for i‐motif structures.  相似文献   

5.
Inhibition of pathogenic protein aggregation may be an important and straightforward therapeutic strategy for curing amyloid diseases. Small‐molecule aggregation inhibitors of Alzheimer’s amyloid‐β (Aβ) are extremely scarce, however, and are mainly restricted to dye‐ and polyphenol‐type compounds that lack drug‐likeness. Based on the structure‐activity relationship of cyclic Aβ16–20 (cyclo‐[KLVFF]), we identified unique pharmacophore motifs comprising side‐chains of Leu2, Val3, Phe4, and Phe5 residues without involvement of the backbone amide bonds to inhibit Aβ aggregation. This finding allowed us to design non‐peptidic, small‐molecule aggregation inhibitors that possess potent activity. These molecules are the first successful non‐peptidic, small‐molecule aggregation inhibitors of amyloids based on rational molecular design.  相似文献   

6.
Short guanine(G)‐repeat and cytosine(C)‐repeat DNA strands can self‐assemble to form four‐stranded G‐quadruplexes and i‐motifs, respectively. Herein, G‐rich and C‐rich strands with non‐G or non‐C terminal bases and different lengths of G‐ or C‐repeats are mixed selectively in pH 4.5 and 6.7 ammonium acetate buffer solutions and studied by electrospray ionization mass spectrometry (ESI‐MS). Various strand associations corresponding to bi‐, tri‐ and tetramolecular ions are observed in mass spectra, indicating that the formation of quadruplex structures is a random strand by strand association process. However, with increasing incubation time for the mixtures, initially associated hybrid tetramers will transform into self‐assembled conformations, which is mainly driven by the structural stability. The melting temperature values of self‐assembled quadruplexes suggest that the length of G‐repeats or C‐repeats shows more significant effect on the stability of quadruplex structures than that of terminal residues. Accordingly, we can obtain the self‐associated tetrameric species generated from the mixtures of various homologous G‐ or C‐strands efficiently by altering the length of G‐ or C‐repeats. Our studies demonstrate that ESI‐MS is a very direct, fast and sensitive tool to provide significant information on DNA strand associations and stoichiometric transitions, particularly for complex mixtures. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
Choline‐binding modules (CBMs) have a ββ‐solenoid structure composed of choline‐binding repeats (CBR), which consist of a β‐hairpin followed by a short linker. To find minimal peptides that are able to maintain the CBR native structure and to evaluate their remaining choline‐binding ability, we have analysed the third β‐hairpin of the CBM from the pneumococcal LytA autolysin. Circular dichroism and NMR data reveal that this peptide forms a highly stable native‐like β‐hairpin both in aqueous solution and in the presence of trifluoroethanol, but, strikingly, the peptide structure is a stable amphipathic α‐helix in both zwitterionic (dodecylphosphocholine) and anionic (sodium dodecylsulfate) detergent micelles, as well as in small unilamellar vesicles. This β‐hairpin to α‐helix conversion is reversible. Given that the β‐hairpin and α‐helix differ greatly in the distribution of hydrophobic and hydrophilic side chains, we propose that the amphipathicity is a requirement for a peptide structure to interact and to be stable in micelles or lipid vesicles. To our knowledge, this “chameleonic” behaviour is the only described case of a micelle‐induced structural transition between two ordered peptide structures.  相似文献   

8.
The self‐assembly of short peptides gives rise to versatile nanoassemblies capable of promoting efficient catalysis. We have semi‐rationally designed a series of seven‐residue peptides that form hemin‐binding catalytic amyloids to facilitate enantioselective cyclopropanation with efficiencies that rival those of engineered hemin proteins. These results demonstrate that: 1) Catalytic amyloids can bind complex metallocofactors to promote practically important multisubstrate transformations. 2) Even essentially flat surfaces of amyloid assemblies can impart a substantial degree of enantioselectivity without the need for extensive optimization. 3) The ease of peptide preparation allows for straightforward incorporation of unnatural amino acids and the preparation of peptides made from d ‐amino acids with complete reversal of enantioselectivity.  相似文献   

9.
10.
Protein aggregation and amyloid formation have historically been linked with various diseases such as Alzheimer''s and Parkinson''s disease, but recently functional amyloids have gained a great deal of interest in not causing a disease and having a distinct function in vivo. Functional bacterial amyloids form the structural scaffold in bacterial biofilms and provide a survival strategy for the bacteria along with antibiotic resistance. The formation of functional amyloids happens extracellularly which differs from most disease related amyloids. Studies of functional amyloids have revealed several distinctions compared to disease related amyloids including primary structures designed to optimize amyloid formation while still retaining a controlled assembly of the individual subunits into classical cross-β-sheet structures, along with a unique cross-α-sheet amyloid fold. Studies have revealed that functional amyloids interact with components found in the extracellular matrix space such as lipids from membranes and polymers from the biofilm. Intriguingly, a level of complexity is added as functional amyloids also interact with several disease related amyloids and a causative link has even been established between functional amyloids and neurodegenerative diseases. It is hence becoming increasingly clear that functional amyloids are not inert protein structures found in bacterial biofilms but interact with many different components including human proteins related to pathology. Gaining a clear understanding of the factors governing the interactions will lead to improved strategies to combat biofilm associated infections and the correlated antibiotic resistance. In the current review we summarize the current state of the art knowledge on this exciting and fast growing research field of biofilm forming bacterial functional amyloids, their structural features and interaction partners.

Functional bacterial amyloids forming biofilms have unique structural characteristics while still being similar to pathological ones. Through many identified interaction partners, they emerge as complex and essential components of biofilms.  相似文献   

11.
Polymer‐based nanodiscs are valuable tools in biomedical research that can offer a detergent‐free solubilization of membrane proteins maintaining their native lipid environment. Herein, we introduce a novel ca. 1.6 kDa SMA‐based polymer with styrene:maleic acid moieties that can form nanodiscs containing a planar lipid bilayer which are useful to reconstitute membrane proteins for structural and functional studies. The physicochemical properties and the mechanism of formation of polymer‐based nanodiscs are characterized by light scattering, NMR, FT‐IR, and TEM. A remarkable feature is that nanodiscs of different sizes, from nanometer to sub‐micrometer diameter, can be produced by varying the lipid‐to‐polymer ratio. The small‐size nanodiscs (up to ca. 30 nm diameter) can be used for solution NMR spectroscopy studies whereas the magnetic‐alignment of macro‐nanodiscs (diameter of > ca. 40 nm) can be exploited for solid‐state NMR studies on membrane proteins.  相似文献   

12.
Polymer‐based nanodiscs are valuable tools in biomedical research that can offer a detergent‐free solubilization of membrane proteins maintaining their native lipid environment. Herein, we introduce a novel ca. 1.6 kDa SMA‐based polymer with styrene:maleic acid moieties that can form nanodiscs containing a planar lipid bilayer which are useful to reconstitute membrane proteins for structural and functional studies. The physicochemical properties and the mechanism of formation of polymer‐based nanodiscs are characterized by light scattering, NMR, FT‐IR, and TEM. A remarkable feature is that nanodiscs of different sizes, from nanometer to sub‐micrometer diameter, can be produced by varying the lipid‐to‐polymer ratio. The small‐size nanodiscs (up to ca. 30 nm diameter) can be used for solution NMR spectroscopy studies whereas the magnetic‐alignment of macro‐nanodiscs (diameter of > ca. 40 nm) can be exploited for solid‐state NMR studies on membrane proteins.  相似文献   

13.
The first general preparative access to compounds of the 2,3‐diethynyl‐1,3‐butadiene (DEBD) class is reported. The synthesis involves a one‐pot, twofold Sonogashira‐type, Pd0‐catalyzed coupling of two terminal alkynes and a carbonate derivative of a 2‐butyne‐1,4‐diol. The synthesis is broad in scope and members of this structural family are kinetically stable enough to be handled using standard laboratory techniques at ambient temperature. They decompose primarily through heat‐promoted cyclodimerizations, which are impeded by alkyl substitution and accelerated by aryl or alkenyl substitution. An iterative sequence of these unprecedented Sonogashira‐type couplings generates a new type of expanded dendralene. A suitably substituted DEBD carrying two terminal alkyne groups undergoes Glaser–Eglinton cyclo‐oligomerization to produce a new class of expanded radialenes, which are chiral due to restricted rotation about their 1,3‐butadiene units. The structural features giving rise to atropisomerism in these compounds are distinct from those reported previously.  相似文献   

14.
Viral membrane proteins are prime targets in combatting infection. Still, the determination of their structure remains a challenge, both with respect to sample preparation and the need for structural methods allowing for analysis in a native‐like lipid environment. Cell‐free protein synthesis and solid‐state NMR spectroscopy are promising approaches in this context, the former with respect to its great potential in the native expression of complex proteins, and the latter for the analysis of membrane proteins in lipids. Herein, we show that milligram amounts of the small envelope protein of the duck hepatitis B virus (DHBV) can be produced by cell‐free expression, and that the protein self‐assembles into subviral particles. Proton‐detected 2D NMR spectra recorded at a magic‐angle‐spinning frequency of 110 kHz on <500 μg protein show a number of isolated peaks with line widths comparable to those of model membrane proteins, paving the way for structural studies of this protein that is homologous to a potential drug target in HBV infection.  相似文献   

15.
Under the influence of a changed environment, amyloid‐forming proteins partially unfold and assemble into insoluble β‐sheet rich fibrils. Molecular‐level characterization of these assembly processes has been proven to be very challenging, and for this reason several simplified model systems have been developed over recent years. Herein, we present a series of three de novo designed model peptides that adopt different conformations and aggregate morphologies depending on concentration, pH value, and ionic strength. The design strictly follows the characteristic heptad repeat of the α‐helical coiled‐coil structural motif. In all peptides, three valine residues, known to prefer the β‐sheet conformation, have been incorporated at the solvent‐exposed b, c, and f positions to make the system prone to amyloid formation. Additionally, pH‐controllable intramolecular electrostatic repulsions between equally charged lysine (peptide A) or glutamate (peptide B) residues were introduced along one side of the helical cylinder. The conformational behavior was monitored by circular dichroism spectroscopic analysis and thioflavin T fluorescence, and the resulting aggregates were further characterized by transmission electron microscopy. Whereas uninterrupted α‐helical aggregates are found at neutral pH, Coulomb repulsions between lysine residues in peptide A destabilize the helical conformation at acidic pH values and trigger an assembly into amyloid‐like fibrils. Peptide B features a glutamate‐based switch functionality and exhibits opposite pH‐dependent folding behavior. In this case, α‐helical aggregates are found under acidic conditions, whereas amyloids are formed at neutral pH. To further validate the pH switch concept, peptide C was designed by including serine residues, thus resulting in an equal distribution of charged residues. Surprisingly, amyloid formation is observed at all pH values investigated for peptide C. The results of further investigations into the effect of different salts, however, strongly support the crucial role of intramolecular charge repulsions in the model system presented herein.  相似文献   

16.
The growing interest in DNA diagnostics is addressed today by microarrays with fluoresence detection. In our approach, we utilize spatially defined arrays of short oligonucleotides on a modified glass surface. Surface enhanced resonance Raman scattering (SERRS) is used to obtain molecularly specific spectra of the Raman‐active dye‐labeled DNA. Nanoparticles produced by enzymatic silver deposition are used as SERS‐active substrate. They grow directly on the modified oligonucleotides and only in the spatially defined areas on the chip. Furthermore, they potentially offer several advantages for SERS detection. The nanoparticles are characterized and their ability for use as SERS‐ and SERRS‐active substrate is estimated. Three different Raman‐active dyes are investigated for their potential for involvement in sequence specific DNA analysis.  相似文献   

17.
A series of eight poly(p‐phenylene vinylene) (PPV) and poly(p‐phenylene ethynylene) (PPE) ( P1–P8 ) derivatives were tested for their ability to detect the nitroaromatic explosive 2,4,6‐trinitrotoluene (TNT) and its model compound 2,6‐dinitrotoluene (DNT). The polymers P1–P8 represent five structural classes that have not been examined for nitroaromatic sensing. These new motifs include PPE derivatives with a main‐chain m‐terphenyl unit ( P1 ) or oxacyclophane canopy‐like structure ( P2 ) and PPV derivatives with 2,6‐mesitylenephenylene repeats ( P3 and P4 ), 9,9‐dialkyl‐1,4‐fluorenylene repeats ( P5 and P6 ), or m‐phenylene units that periodically disrupt π‐conjugation along the backbone of the polymer ( P7 and P8 ). The time‐dependent photoluminescent response of films to TNT and DNT and the solution‐phase Stern‐Volmer quenching constants for both TNT and DNT were determined. The results are rationalized in terms of side‐chain sterics and π‐system electronics and are discussed relative to known conjugated polymers. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1487–1492  相似文献   

18.
Structural proteomics refers to large‐scale mapping of protein structures in order to understand the relationship between protein sequence, structure, and function. Chemical labeling, in combination with mass‐spectrometry (MS) analysis, have emerged as powerful tools to enable a broad range of biological applications in structural proteomics. The key to success is a biocompatible reagent that modifies a protein without affecting its high‐order structure. Fluorine, well‐known to exert profound effects on the physical and chemical properties of reagents, should have an impact on structural proteomics. In this Minireview, we describe several fluorine‐containing reagents that can be applied in structural proteomics. We organize their applications around four MS‐based techniques: a) affinity labeling, b) activity‐based protein profiling (ABPP), c) protein footprinting, and d) protein cross‐linking. Our aim is to provide an overview of the research, development, and application of fluorine‐containing reagents in protein structural studies.  相似文献   

19.
20.
Sequence control in polymers, well‐known in nature, encodes structure and functionality. Here we introduce a new architecture, based on the nucleophilic aromatic substitution chemistry of cyanuric chloride, that creates a new class of sequence‐defined polymers dubbed TZPs. Proof of concept is demonstrated with two synthesized hexamers, having neutral and ionizable side chains. Molecular dynamics simulations show backbone–backbone interactions, including H‐bonding motifs and pi–pi interactions. This architecture is arguably biomimetic while differing from sequence‐defined polymers having peptide bonds. The synthetic methodology supports the structural diversity of side chains known in peptides, as well as backbone–backbone hydrogen‐bonding motifs, and will thus enable new macromolecules and materials with useful functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号