首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A closer look : Investigation of the reduction properties of a single Fischer–Tropsch catalyst particle, using in situ scanning transmission X‐ray microscopy with spatial resolution of 35 nm, reveals a heterogeneous distribution of Fe0, Fe2+, and Fe3+ species. Regions of different reduction properties are defined and explained on the basis of local chemical interactions and catalyst morphology.

  相似文献   


2.
Iron‐based catalysts for the Fischer–Tropsch synthesis bring about the conversion of synthesis gas (CO/H2) derived from coal or biomass into liquid transportation fuels. In their Communication on page 3632 ff., B. M. Weckhuysen, F. M. F. de Groot, and co‐workers provide insights into the difference in behavior of the catalyst precursors during pretreatment in H2 on both the nanoscopic and the bulk scale. These findings enable further understanding of how the activated catalyst works.

  相似文献   


3.
4.
A simple, highly reproducible protocol for the hydrogenation of alkenes and alkynes and for the hydrogenolysis of O‐benzyl ethers has been developed. The method features the in situ preparation of an active Pd0/C catalyst from Pd(OAc)2 and charcoal, in methanol. The mild reaction conditions (25 °C) and low catalyst loading required (0.025 mol %), as well as the absence of contamination of the product by palladium residues (<4 ppb), make this a sustainable, useful process for organic chemists. Alternatively, the protocol can be carried out under microwave activation, to shorten the reaction times, with cyclohexene as the hydrogen source.  相似文献   

5.
6.
7.
The crystal structures of three MgCl(2)·nEtOH complexes with n=1.5, 2.8, and 3.3 have been fully determined. Such complexes are the fundamental precursors for Ziegler-Natta polymerization catalysts used to produce polyolefins on a multimillion-ton scale worldwide. The ab initio structure solution showed that the structure of MgCl(2)·nEtOH complexes with n=1.5 and 2.8 are based on ribbons of metal-centered octahedra, whereas for n=3.3 this chainlike arrangement breaks into a threadlike structure of isolated octahedra linked by hydrogen bonds. A clear correlation between catalyst performance and the crystal structure of precursors has been found, and reveals the fundamental role of the latter in determining catalyst properties. The direct knowledge of building blocks in the precursor structures will help to develop more accurate models for activated catalysts. These models will not require the arbitrary and oversimplified assumption of locating the catalyst active sites on selected cut surfaces of the α-MgCl(2) crystal lattice.  相似文献   

8.
9.
Co‐components are a powerful tool to tune the performance of catalysts, but their nature and their impact on the catalysts is often controversially discussed. In this study X‐ray absorption spectroscopy (XAS) was employed to elucidate the nature of co‐components and their impact on the catalytic reaction. In anatase‐supported Pd‐based catalysts for the gas‐phase acetoxylation of toluene, less noble co‐components (e.g., Mn, Co, and Sb) spread over the support in their oxidic form and changed their valence state on stream. Incorporated atoms such as C or a small part of the Sb affect the electronic structure of Pd. For the noble Au, only a weak interaction with the support and Pd was observed during time on stream. Only XAS at the K‐edges together with investigations of the Pd L‐edge for a better understanding of the electronic structure, supplemented by STEM for elemental mapping, allow such detailed insights.  相似文献   

10.
Well‐designed, self‐assembled, metal–organic frameworks were constructed by simple mixing of multitopic MonoPhos‐based ligands ( 3 ; MonoPhos=chiral, monodentate phosphoramidites based on the 1,1′‐bi‐2‐naphthol platform) and [Rh(cod)2]BF4 (cod=cycloocta‐1,5‐diene). This self‐supporting strategy allowed for simple and efficient catalyst immobilization without the use of extra added support, giving well‐characterized, insoluble (in toluene) polymeric materials ( 4 ). The resulting self‐supported catalysts ( 4 ) showed outstanding catalytic performance for the asymmetric hydrogenation of a number of α‐dehydroamino acids ( 5 ) and 2‐aryl enamides ( 7 ) with enantiomeric excess (ee) ranges of 94–98 % and 90–98 %, respectively. The linker moiety in 4 influenced the reactivity significantly, albeit with slight impact on the enantioselectivity. Acquisition of reaction profiles under steady‐state conditions showed 4 h and 4 i to have the highest reactivity (turnover frequency (TOF)=95 and 97 h?1 at 2 atm, respectively), whereas appropriate substrate/catalyst matching was needed for optimum chiral induction. The former was recycled 10 times without loss in ee (95–96 %), although a drop in TOF of approximately 20 % per cycle was observed. The estimation of effective catalytic sites in self‐supported catalyst 4 e was also carried out by isolation and hydrogenation of catalyst–substrate complex, showing about 37 % of the RhI centers in the self‐supported catalyst 4 e are accessible to substrate 5 c in the catalysis. A continuous flow reaction system using an activated C/ 4 h mixture as stationary‐phase catalyst for the asymmetric hydrogenation of 5 b was developed and run continuously for a total of 144 h with >99 % conversion and 96–97 % enantioselectivity. The total Rh leaching in the product solution is 1.7 % of that in original catalyst 4 h .  相似文献   

11.
A Cu‐based methanol synthesis catalyst was obtained from a phase pure Cu,Zn,Al hydrotalcite‐like precursor, which was prepared by co‐precipitation. This sample was intrinsically more active than a conventionally prepared Cu/ZnO/Al2O3 catalyst. Upon thermal decomposition in air, the [(Cu0.5Zn0.17Al0.33)(OH)2(CO3)0.17] ? mH2O precursor is transferred into a carbonate‐modified, amorphous mixed oxide. The calcined catalyst can be described as well‐dispersed “CuO” within ZnAl2O4 still containing stabilizing carbonate with a strong interaction of Cu2+ ions with the Zn–Al matrix. The reduction of this material was carefully analyzed by complementary temperature‐programmed reduction (TPR) and near‐edge X‐ray absorption fine structure (NEXAFS) measurements. The results fully describe the reduction mechanism with a kinetic model that can be used to predict the oxidation state of Cu at given reduction conditions. The reaction proceeds in two steps through a kinetically stabilized CuI intermediate. With reduction, a nanostructured catalyst evolves with metallic Cu particles dispersed in a ZnAl2O4 spinel‐like matrix. Due to the strong interaction of Cu and the oxide matrix, the small Cu particles (7 nm) of this catalyst are partially embedded leading to lower absolute activity in comparison with a catalyst comprised of less‐embedded particles. Interestingly, the exposed Cu surface area exhibits a superior intrinsic activity, which is related to a positive effect of the interface contact of Cu and its surroundings.  相似文献   

12.
By simply changing the oxide support, the selectivity of a metal–oxide catalysts can be tuned. For the CO2 hydrogenation over PtCo bimetallic catalysts supported on different reducible oxides (CeO2, ZrO2, and TiO2), replacing a TiO2 support by CeO2 or ZrO2 selectively strengthens the binding of C,O‐bound and O‐bound species at the PtCo–oxide interface, leading to a different product selectivity. These results reveal mechanistic insights into how the catalytic performance of metal–oxide catalysts can be fine‐tuned.  相似文献   

13.
14.
许峰  胡小方  赵建华  袁清习 《化学学报》2009,67(11):1205-1210
利用同步辐射CT (SR-CT)技术, 在氮化硅陶瓷样品烧结过程中对其进行实时投影成像, 并应用滤波反投影算法和数字图像处理技术, 得到了样品在整个烧结过程中内部微结构演化的二维和三维重建图像, 实现了对陶瓷固相烧结过程实时、无损的观测. 通过重建图像清晰观测到了陶瓷样品在烧结三个阶段中颗粒接触、烧结颈形成、晶粒和气孔长大、气孔球化并收缩等烧结现象; 统计了样品在不同烧结时刻的孔隙率, 得到了孔隙率随烧结时间对数的变化曲线, 并根据曲线分析了样品在不同烧结时刻致密化速率的变化, 得到了烧结中期孔隙率和时间对数的线性关系. 实验的结果和现有烧结理论相吻合, 并为进一步完善烧结理论提供了有效的实验数据.  相似文献   

15.
16.
Ultrahigh vacuum (UHV) surface science techniques are used to study the heterogeneous catalytic dehydrogenation of a liquid organic hydrogen carrier in its liquid state close to the conditions of real catalysis. For this purpose, perhydrocarbazole (PH), otherwise volatile under UHV, is covalently linked as functional group to an imidazolium cation, forming a non‐volatile ionic liquid (IL). The catalysed dehydrogenation of the PH unit as a function of temperature is investigated for a Pt foil covered by a macroscopically thick PH‐IL film and for Pd particles suspended in the PH‐IL film, and for PH‐IL on Au as inert support. X‐ray photoelectron spectroscopy and thermal desorption spectroscopy allows us to follow in situ the catalysed transition of perhydrocarbazole to carbazole at technical reaction temperatures. The data demonstrate the crucial role of the Pt and Pd catalysts in order to shift the dehydrogenation temperature below the critical temperature of thermal decomposition.  相似文献   

17.
18.
Fundamental understanding about the thermal stability of nanoparticles and deliberate control of structural and morphological changes under reactive conditions is of general importance for a wide range of reaction processes in heterogeneous and electrochemical catalysis. Herein, we present a parametric study of the thermal stability of carbon‐supported Pt nanoparticles at 80 °C and 160 °C, with an initial particle size below 3 nm, using in situ high‐temperature X‐ray diffraction (HT‐XRD). The effects on the thermal stability of carbon‐supported Pt nanoparticles are investigated with control parameters such as Brunauer–Emmet–Teller (BET) surface area, metal loading, temperature, and gas environment. We demonstrate that the growth rate exhibits a complex, nonlinear behavior and is largely controlled by the temperature, the initial particle size, and the interparticle distance. In addition, an ex situ transmission electron microscopy study was performed to verify our results obtained from the in situ HT‐XRD study.  相似文献   

19.
A catalyst model comprising platinum nanoparticles deposited on a TiO2(110) wafer was prepared in a vacuum, transferred in air, and characterized with a Kelvin probe force microscope placed in a N2 environment. The topography and local work function of individual nanoparticles were observed with single‐nanometer resolution in the N2 environment of one atmosphere pressure. Some nanoparticle presented positive shifts of work function relative to that of the TiO2 surface, while the others showed negative shifts. This finding suggests heterogeneous properties of the nanoparticles exposed to air and then N2. The ability of the advanced microscope was demonstrated in observing the work function of metal nanoparticles on a metal oxide support even in the presence of vapor environments.  相似文献   

20.
An iridium oxide nanoparticle electrocatalyst under oxygen evolution reaction conditions was probed in situ by ambient‐pressure X‐ray photoelectron spectroscopy. Under OER conditions, iridium undergoes a change in oxidation state from IrIV to IrV that takes place predominantly at the surface of the catalyst. The chemical change in iridium is coupled to a decrease in surface hydroxide, providing experimental evidence which strongly suggests that the oxygen evolution reaction on iridium oxide occurs through an OOH‐mediated deprotonation mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号