首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The oxidant‐free dehydrogenation of n‐pentanol over copper based catalysts was investigated in this paper. The effect of metal modification on the activity and stability of the copper catalyst supported on γ‐Al2O3 and La2O3 (Cu/γ‐Al2O3‐La2O3) was clarified and a Cr modified Cu/Al2O3‐La2O3 (Cu‐Cr/γ‐Al2O3‐La2O3) showed the best catalytic performance. The conversion of n‐pentanol was 70.0% and the selectivity for n‐pentanal increased to 97.1% over Cu‐Cr/γ‐Al2O3‐La2O3. X‐ray diffraction and temperature programmed reduction of H2 indicated that the addition of Cr favors the formation and reduction of the copper oxide, and the dispersion of the active Cu0 species, accounting for the good activity and stability of this catalyst. Furthermore, the lower amount of acidic sites in Cu‐Cr/γ‐Al2O3‐La2O3 is suggested to suppress the dehydration in oxidant‐free dehydrogenation of n‐pentanol, accounting for the higher selectivity for n‐pentanal.  相似文献   

2.
The effect of manganese on the dispersion, reduction behavior and active states of surface of supported copper oxide catalysts have been investigated by XRD, temperature‐programmed reduction and XPS. The activity of methanol synthesis from CO2/H2 was also investigated. The catalytic activity over CuO‐MnOx/γ‐Al2O3 catalyst for CO2 hydrogenation is higher than that of CuO/γ‐Al2O3. The adding of manganese is beneficial in enhancing the dispersion of the supported copper oxide and make the TPR peak of the CuO‐MnKx/γ‐Al2O3 catalyst different from the individual supported copper and manganese oxide catalysts, which indicates that there exists strong interaction between the copper and manganese oxide. For the CuO/γ‐Al2O3 catalyst there are two reducible copper oxide species; α and β peaks are attributed to the reduction of highly dispersed copper oxide species and bulk CuO species, respectively. For the CuO‐MnOx/γ‐Al2O3 catalyst, four reduction peaks are observed, α peak is attributed to the dispersed copper oxide species; β peak is ascribed to the bulk CuO; γ peak is attributed to the reduction of high dispersed CuO interacting with manganese; δ peak may be the reduction of the manganese oxide interacting with copper oxide. XPS results show that Cu+ mostly existed on the working surface of the Cu‐Mn/γ‐Al2O3 catalysts. The activity was promoted by Cu with positive charge which was formed by means of long path exchange function between Cu? O? Mn. These results indicate that there is synergistic interaction between the copper and manganese oxide, which is responsible for the high activity of CO2 hydrogenation.  相似文献   

3.
By alternating‐current electrochemical technique crystals of copper(I) π‐complex with 1‐allylpyridinium chloride of [C5H5N(C3H5)][Cu2Cl3] ( 1 ) composition have been obtained and structurally investigated. Compound 1 crystallizes in monoclinic system, space group C2/c a = 24.035(1) Å, b = 11.4870(9) Å, c = 7.8170(5) Å, β = 95.010(5)°, V = 2150.0(2) Å3 (at 100 K), Z = 8, R = 0.028, for 4836 independent reflections. In the structure 1 trigonal‐pyramidal environment of π‐coordinated copper(I) atom is formed by a lengthened to 1.376(2) Å C=C bond of allyl group and by three chlorine atoms. Other two copper atoms are tetrahedrally surrounded by chlorine atoms only. The coordination polyhedra are combined into an original infinite (Cu4Cl62—)n fragment. Structural comparison of 1 and the recently studied copper(I) chloride π‐complexes with 3‐amino‐, 2‐amino‐, 4‐amino‐1‐allylpyridinium chlorides of respective [LCu2Cl3] ( 2 ), [L2Cu2Cl4] ( 3 ), and [LCuCl2] ( 4 ) compositions allowed us to reveal the trend of the inorganic fragment complication which depends on pKa (base) value of the corresponding initial heterocycle.  相似文献   

4.
The Cu2+ ions in the title compounds, namely bis[1,3‐bis(pentafluorophenyl)propane‐1,3‐dionato‐κ2O,O′]copper(II) p‐xylene n‐solvate, [Cu(C15HF10O2)2nC8H10, with n = 1, (I), n = 2, (II), and n = 4, (III), are coordinated by two 1,3‐bis(pentafluorophenyl)propane‐1,3‐dionate ligands. The coordination complexes of (I) and (II) have crystallographic inversion symmetry at the Cu atom and the p‐xylene molecule in (I) also lies across an inversion centre. The p‐xylene molecules in (I) and (II) interact with the pentafluorophenyl groups of the complex via arene–perfluoroarene interactions. In the crystal of (III), two of the p‐xylene molecules interact with the pentafluorophenyl groups via arene–perfluoroarene interactions. The other two p‐xylene molecules are located on the CuO4 coordination plane, forming a uniform cavity produced by metal...π interactions.  相似文献   

5.
Two organic–inorganic hybrid compounds have been prepared by the combination of the 4‐[(E)‐2‐(pyridin‐1‐ium‐2‐yl)ethenyl]pyridinium cation with perhalometallate anions to give 4‐[(E)‐2‐(pyridin‐1‐ium‐2‐yl)ethenyl]pyridinium tetrachloridocobaltate(II), (C12H12N2)[CoCl4], (I), and 4‐[(E)‐2‐(pyridin‐1‐ium‐2‐yl)ethenyl]pyridinium tetrachloridozincate(II), (C12H12N2)[ZnCl4], (II). The compounds have been structurally characterized by single‐crystal X‐ray diffraction analysis, showing the formation of a three‐dimensional network through X—H...ClnM (X = C, N+; n = 1, 2; M = CoII, ZnII) hydrogen‐bonding interactions and π–π stacking interactions. The title compounds were also characterized by FT–IR spectroscopy and thermogravimetric analysis (TGA).  相似文献   

6.
A solvothermal reaction of Zn(NO3)2 ? 6 H2O, tetra‐(4‐pyridyl)porphyrin (H2TPyP), and 4,4′‐oxybis(benzoic acid) (H2OBA) resulted in a new two‐dimensional Zn‐ porphyrin metal–organic framework compound, [Zn2(C40H24N8)0.5(C14H8O5)(DMA)](DMA)(H2O)6 ( 1 ; DMA=N,N‐dimethylacetamide). The ZnII ions present in 1 could be exchanged by using a solution of Cu(NO3)2 ? 3 H2O in DMA at room temperature to give [Cu2(C40H24N8)0.5(C14H8O5)(DMA)](DMA)(H2O)3 ( Cu1 ). The extra‐framework solvent molecules have been shown to be reversibly removed or exchanged without collapse of the framework. Solvent‐free Cu1 was explored as an active heterogeneous catalyst towards three different organic reactions: 1) the chemical fixation of CO2 into cyclic carbonate at room temperature and 1 atm; 2) the nitroaldol reaction under solvent‐free conditions, and 3) the three‐component coupling of aminopyridine, benzaldehyde, and aryl alkynes followed by 5‐exo‐dig cyclization to produce the important pharmacophore imidazopyridine.  相似文献   

7.
The O2 activation and CO oxidation on nitrogen‐doped C59N fullerene are investigated using first‐principles calculations. The calculations indicate that the C59N fullerene is able to activate O2 molecules resulting in the formation of superoxide species ( ) both kinetically and thermodynamically. The active superoxide can further react with CO to form CO2 via the Eley–Rideal mechanism by passing a stepwise reaction barrier of only 0.20 eV. Ab initio molecular dynamics (AIMD) simulation is carried out to evidence the feasibility of the Eley–Rideal mechanism. In addition, the second CO oxidation takes place with the remaining atomic O without any activation energy barrier. The full catalytic reaction cycles can occur energetically favorable and suggest a two‐step Eley–Rideal mechanism for CO oxidation with O2 catalyzed by the C59N fullerene. The catalytic properties of high percentage nitrogen‐doped fullerene (C48N12) is also examined. This work contributes to designing higher effective carbon‐based materials catalysts by a dependable theoretical insight into the catalytic properties of the nitrogen‐doped fullerene. © 2017 Wiley Periodicals, Inc.  相似文献   

8.
A novel composite material of copper (I) oxide at manganese (IV) oxide (Cu2O@MnO2), was synthesized and applied for modification on the glassy carbon electrode (GCE) surface (Cu2O@MnO2/GCE) as a hydrogen peroxide (H2O2) sensor. The composite material was characterized regarding its structural and morphological properties, using field emission scanning electron microscopy (FE‐SEM), energy‐dispersive X‐ray spectroscopy (EDX), X‐ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The Cu2O@MnO2/GCE showed an excellent electrocatalytic response to the oxidation of H2O2 which provided a 0.56 s?1 charge transfer rate constant (Ks), 1.65×10?5 cm2 s?1 diffusion coefficient value (D), 0.12 mm2 electroactive surface area (Ae) and 1.04×10?8 mol cm?2 surface concentration ( ). At the optimal condition, the constructed sensor exhibited a wide linear range from 0.5 μM to 20 mM with a low limit of detection (63 nM, (S/N=3) and a good sensitivity of 256.33 μA mM?1 cm?2. It also presented high stability (ΔIresponse±15 %, n=100), repeatability (1.25 %RSD, n=10) and reproducibility (3.55 %RSD, n=10). The results indicated that the synthesized Cu2O@MnO2 was successfully used as a new platform for H2O2 sensing.  相似文献   

9.
The three title compounds, namely 4‐phenyl‐1H‐imidazolium hexa‐μ2‐chloro‐chloro‐μ4‐oxo‐tris­(4‐phenyl‐1H‐imidazole‐κN1)­tetra­copper(II) monohydrate, (C9H9N2)[Cu4Cl7O(C9H8N2)3]·H2O, hexa‐μ2‐chloro‐μ4‐oxo‐tetra­kis­(pyridine N‐oxide‐κO)tetra­copper(II), [Cu4Cl6O(C5H5NO)4], and hexa‐μ2‐chloro‐tetra­kis(2‐methyl‐1H‐imidazole‐κN1)‐μ4‐oxo‐tetra­copper(II) methanol trisolvate, [Cu4Cl6O(C4H6N2)4]·3CH4O, exhibit the same Cu4OCl6 framework, where the O atom at the centre of an almost regular tetra­hedron bridges four copper cations at the corners. This group is in turn surrounded by a Cl6 octa­hedron, leading to a rather globular species. This special arrangement of the CuII cations results in a diversity of magnetic behaviours.  相似文献   

10.
The title compounds, bis(μ‐3,5‐dichloro‐2‐oxidobenzoato)‐κ3O1,O2:O23O2:O1,O2‐bis[(3,5‐dichloro‐2‐hydroxybenzoic acid‐κO1)(1,10‐phenanthroline‐κ2N,N′)copper(II)], [Cu2(C7H2Cl2O3)2(C7H4Cl2O3)2(C12H8N2)2], (I), and bis(μ‐5‐chloro‐2‐oxidobenzoato)‐κ3O1,O2:O13O1:O1,O2‐bis[(5‐chloro‐2‐hydroxybenzoic acid‐κO1)(1,10‐phenanthroline‐κ2N,N′)copper(II)] ethanol monosolvate, [Cu2(C7H3ClO3)2(C7H5ClO3)2(C12H8N2)2]·C2H6O, (II), contain centrosymmetric dinuclear complex molecules in which Cu2+ cations are surrounded by a chelating 1,10‐phenanthroline ligand, a chelating 3,5‐dichloro‐2‐oxidobenzoate or 5‐chloro‐2‐oxidobenzoate anionic ligand and a monodentate 3,5‐dichloro‐2‐hydroxybenzoic acid or 5‐chloro‐2‐hydroxybenzoic acid ligand. The chelating benzoate ligand also bridges to the other Cu2+ ion in the molecule, but the O atom involved in the bridge is different in the two complexes, being the phenolate O atom in (I) and a carboxylate O atom in (II). The bridge completes a 4+1+1 axially elongated tetragonal–bipyramidal arrangement about each Cu2+ cation. The complex molecules of both compounds are linked into one‐dimensional supramolecular chains through O—H...O hydrogen bonds.  相似文献   

11.
The porous framework [Cu2(H2O)2L] ? 4 H2O ? 2 DMA (H4L=oxalylbis(azanediyl)diisophthalic acid; DMA=N,N‐dimethylacetamide), denoted NOTT‐125, is formed by connection of {Cu2(RCOO)4} paddlewheels with the isophthalate linkers in L4?. A single crystal structure determination reveals that NOTT‐125 crystallises in monoclinic unit cell with a=27.9161(6), b=18.6627(4) and c=32.3643(8) Å, β=112.655(3)°, space group P21/c. The structure of this material shows fof topology, which can be viewed as the packing of two types of cages (cage A and cage B) in three‐dimensional space. Cage A is constructed from twelve {Cu2(OOCR)4} paddlewheels and six linkers to form an ellipsoid‐shaped cavity approximately 24.0 Å along its long axis and 9.6 Å across its central diameter. Cage B consists of six {Cu2(OOCR)4} units and twelve linkers and has a spherical diameter of 12.7 Å taking into account the van der Waals radii of the atoms. NOTT‐125 incorporates oxamide functionality within the pore walls, and this, combined with high porosity in desolvated NOTT‐125a, is responsible for excellent CO2 uptake (40.1 wt % at 273 K and 1 bar) and selectivity for CO2 over CH4 or N2. Grand canonical Monte Carlo (GCMC) simulations show excellent agreement with the experimental gas isotherm data, and a computational study of the specific interactions and binding energies of both CO2 and CH4 with the linkers in NOTT‐125 reveals a set of strong interactions between CO2 and the oxamide motif that are not possible with a single amide.  相似文献   

12.
Carbon dioxide (CO2) conversion is promising in alleviating the excessive CO2 level and simultaneously producing valuables. This work reports the preparation of carbon nanorods encapsulated bismuth oxides for the efficient CO2 electroconversion toward formate production. This resultant catalyst exhibits a small onset potential of ?0.28 V vs. RHE and partial current density of over 200 mA cm?2 with a stable and high Faradaic efficiency of 93 % for formate generation in a flow cell configuration. Electrochemical results demonstrate the synergistic effect in the Bi2O3@C promotes the rapid and selective CO2 reduction in which the Bi2O3 is beneficial for improving the reaction kinetics and formate selectivity, while the carbon matrix would be helpful for enhancing the activity and current density of formate production. This work provides effective bismuth‐based MOF derivatives for efficient formate production and offers insights in promoting practical CO2 conversion technology.  相似文献   

13.
Compounds containing copper(I) are of interest for their role in biological processes. The nature of short (< ∼3.2 Å) Cu...Cu contacts within these compounds has been debated, being either described as weakly attractive (bonding) `cuprophilic' interactions, or simply as short metal–metal distances constrained by ligand geometry or largely ionic in nature. The title three‐dimensional Cu+‐containing coordination polymer, [Cu3(C7H7N2O2)Cl2]n, was formed from the in situ reduction of CuCl2 in the presence of 3,5‐diaminobenzoic acid and KOH under hydrothermal conditions. Its complex crystal structure contains ten distinct CuI atoms, two of which lie on crystallographic inversion centres. The copper coordination geometries include near‐linear CuOCl and CuN2, T‐shaped CuOCl2 and distorted tetrahedral CuOCl3 groups. Each CuI atom is also associated with two adjacent metal atoms, with Cu...Cu distances varying from 2.7350 (14) to 3.2142 (13) Å; if all these are regarded as `cuprophilic' interactions, then infinite [01] zigzag chains of CuI atoms occur in the crystal. The structure is consolidated by N—H...Cl hydrogen bonds.  相似文献   

14.
A mononuclear complex [Cu(HL · S)2(NO3)2] ( 1 ) and a one‐ dimensional coordination polymer [Cu(HL · S)Cl2]n ( 2 ) [HL · S = 4‐(pyridin‐2‐ylmethyl)tetrahydro‐2H‐thiopyran‐4‐ol] showcase the structure‐directing role of the counterions in their formation reaction: monodentate ligation of NO3 and Cl induces an octahedral (with two HL · S per Cu in 1 ) or trigonal‐bipyramidal (with one HL · S per Cu in 2 ) CuII coordination environment. In contrast to 1 exhibiting no coordinative metal–sulfur bonds in the crystal lattice (space group P21/c), 2 (P21/c) features intermolecular Cu–S contacts of 2.3188(7) Å. The coordination compounds are thermally stable up to ca. 160 °C. Whereas 1 demonstrates the spin‐like behavior of an isolated central CuII ion, compound 2 exhibits weak antiferromagnetic intra‐chain coupling with J ≈ –2.1 cm–1 between neighboring CuII ions.  相似文献   

15.
Two new one‐dimensional CuII coordination polymers (CPs) containing the C2h‐symmetric terphenyl‐based dicarboxylate linker 1,1′:4′,1′′‐terphenyl‐3,3′‐dicarboxylate (3,3′‐TPDC), namely catena‐poly[[bis(dimethylamine‐κN)copper(II)]‐μ‐1,1′:4′,1′′‐terphenyl‐3,3′‐dicarboxylato‐κ4O,O′:O′′:O′′′] monohydrate], {[Cu(C20H12O4)(C2H7N)2]·H2O}n, (I), and catena‐poly[[aquabis(dimethylamine‐κN)copper(II)]‐μ‐1,1′:4′,1′′‐terphenyl‐3,3′‐dicarboxylato‐κ2O3:O3′] monohydrate], {[Cu(C20H12O4)(C2H7N)2(H2O)]·H2O}n, (II), were both obtained from two different methods of preparation: one reaction was performed in the presence of 1,4‐diazabicyclo[2.2.2]octane (DABCO) as a potential pillar ligand and the other was carried out in the absence of the DABCO pillar. Both reactions afforded crystals of different colours, i.e. violet plates for (I) and blue needles for (II), both of which were analysed by X‐ray crystallography. The 3,3′‐TPDC bridging ligands coordinate the CuII ions in asymmetric chelating modes in (I) and in monodenate binding modes in (II), forming one‐dimensional chains in each case. Both coordination polymers contain two coordinated dimethylamine ligands in mutually trans positions, and there is an additional aqua ligand in (II). The solvent water molecules are involved in hydrogen bonds between the one‐dimensional coordination polymer chains, forming a two‐dimensional network in (I) and a three‐dimensional network in (II).  相似文献   

16.
Crystals of the title π‐complex, [Cu4Cl6(C8H11N2)2]n, were obtained by means of alternating‐current electrochemical synthesis. The structure consists of infinite copper–chlorine chains to which 1‐allyl‐3‐amino­pyridinium moieties are attached via a η2 Cu—(C=C) interaction. The two independent Cu atoms have distinct coordination environments. One is three‐coordinate, surrounded by two chloro ligands and the olefinic bond, whereas the second copper center is surrounded by a tetrahedral arrangement of four Cl atoms. The lower basicity of 3‐amino­pyridine as compared with 2‐ and 4‐amino­pyridine lowers the capacity of the organic ligand for donating to N—H⋯Cl hydrogen bonds and results in the formation of a large inorganic fragment.  相似文献   

17.
Developing rechargeable Na–CO2 batteries is significant for energy conversion and utilization of CO2. However, the reported batteries in pure CO2 atmosphere are non‐rechargeable with limited discharge capacity of 200 mAh g?1. Herein, we realized the rechargeability of a Na–CO2 battery, with the proposed and demonstrated reversible reaction of 3 CO2+4 Na?2 Na2CO3+C. The battery consists of a Na anode, an ether‐based electrolyte, and a designed cathode with electrolyte‐treated multi‐wall carbon nanotubes, and shows reversible capacity of 60000 mAh g?1 at 1 A g?1 (≈1000 Wh kg?1) and runs for 200 cycles with controlled capacity of 2000 mAh g?1 at charge voltage <3.7 V. The porous structure, high electro‐conductivity, and good wettability of electrolyte to cathode lead to reduced electrochemical polarization of the battery and further result in high performance. Our work provides an alternative approach towards clean recycling and utilization of CO2.  相似文献   

18.
Electrochemical reduction of carbon dioxide (CO2) to CO is regarded as an efficient method to utilize the greenhouse gas CO2, because the CO product can be further converted into high value‐added chemicals via the Fisher–Tropsch process. Among all electrocatalysts used for CO2‐to‐CO reduction, Au‐based catalysts have been demonstrated to possess high selectivity, but their precious price limits their future large‐scale applications. Thus, simultaneously achieving high selectivity and reasonable price is of great importance for the development of Au‐based catalysts. Here, we report Ag@Au core–shell nanowires as electrocatalyst for CO2 reduction, in which a nanometer‐thick Au film is uniformly deposited on the core Ag nanowire. Importantly, the Ag@Au catalyst with a relative low Au content can drive CO generation with nearly 100 % Faraday efficiency in 0.1 m KCl electrolyte at an overpotential of ca. ?1.0 V. This high selectivity of CO2 reduction could be attributed to a suitable adsorption strength for the key intermediate on Au film together with the synergistic effects between the Au shell and Ag core and the strong interaction between CO2 and Cl? ions in the electrolyte, which may further pave the way for the development of high‐efficiency electrocatalysts for CO2 reduction.  相似文献   

19.
A new organic–inorganic hybrid compound, catena‐poly[bis(1‐ethyl‐3‐methylimidazolium) [μ5‐bromido‐tri‐μ3‐bromido‐tri‐μ2‐bromido‐pentacuprate(I)]], {(C6H11N2)2[Cu5Br7]}n, has been obtained under ionothermal conditions from a reaction mixture containing Ba(OH)2·8H2O, Cu(OH)2·2H2O, As2O5, 1‐ethyl‐3‐methylimidazolium bromide and distilled water. The crystal structure consists of complex [Cu5Br7]2− anions arranged in sinusoidal {[Cu5Br7]2−}n chains running along the a axis, which are surrounded by 1‐ethyl‐3‐methylimidazolium cations. Three of the five unique Br atoms and one of the three CuI atoms occupy special positions with half‐occupancy (a mirror plane perpendicular to the b axis, site symmetry m). The CuI ions are in a distorted tetrahedral coordination environment, with four Br atoms at distances ranging from 2.3667 (10) to 2.6197 (13) Å, and an outlier at 3.0283 (12) Å, exceptionally elongated and with a small contribution to the bond‐valence sum of only 6.7%. Short C—H...Br contacts build up a three‐dimensional network. The Cu...Cu distances within the chain range from 2.8390 (12) to 3.0805 (17) Å, indicating the existence of weak CuI...CuI cuprophilic interactions.  相似文献   

20.
A novel porous copper‐based metal‐organic framework {[Cu2(TTDA)2]*(DMA)7}n ( 1 ) (DMA = N,N‐dimethylacetamide) was designed and synthesized via the combination of a dual‐functional organic linker 5′‐(4‐(4H‐1,2,4‐triazol‐4‐yl)phenyl)‐[1,1′:3′,1′′‐terphenyl]‐4,4′′‐dicarboxylic acid (H2TTDA) and a dinuclear CuII paddle‐wheel cluster. This MOF is characterized by elemental analysis, powder X‐ray diffraction (PXRD), thermo gravimetric analysis (TGA), and single‐crystal X‐ray diffraction. The framework is constructed from two types of cages (octahedral and cuboctahedral cages) and exhibits two types of circular‐shaped channels of approximate size of 5.8 and 11.4 Å along the crystallographic c axis. The gas sorption experiments indicate that it possesses a large surface area (1687 m2 · g–1) and high CO2 adsorption capacities around room temperature (up to 172 cm3 · g–1 at 273 K and 124 cm3 · g–1 at 298 K).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号