首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Achieving selective C H bond cleavage is critical for developing catalytic processes that transform small alkanes to value‐added products. The present study clarifies the molecular‐level origin for an exceptionally strong preference for propane to dissociate on the crystalline PdO(101) surface via primary C H bond cleavage. Using reflection absorption infrared spectroscopy (RAIRS) and density functional theory (DFT) calculations, we show that adsorbed propane σ‐complexes preferentially adopt geometries on PdO(101) in which only primary C H bonds datively interact with the surface Pd atoms at low propane coverages and are thus activated under typical catalytic reaction conditions. We show that a propane molecule achieves maximum stability on PdO(101) by adopting a bidentate geometry in which a H Pd dative bond forms at each CH3 group. These results demonstrate that structural registry between the molecule and surface can strongly influence the selectivity of a metal oxide surface in activating alkane C H bonds.  相似文献   

2.
We used dispersion-corrected density functional theory (DFT-D3) calculations to investigate the initial C-H bond cleavage of propane σ-complexes adsorbed on the PdO(101) surface. The calculations predict that propane molecules adsorbed in η(1) configurations can undergo facile C-H bond cleavage on PdO(101), where the energy barrier for C-H bond activation is lower than that for desorption for each molecular complex. The preferred pathway for propane dissociation on PdO(101) corresponds to cleavage of a primary C-H bond of a so-called staggered p-2η(1) complex which initially coordinates with the surface by forming two H-Pd dative bonds, one at each CH(3) group. Among all of the adsorbed propane complexes, the staggered p-2η(1) complex has the highest binding energy and must overcome the lowest energy barrier for C-H bond scission. Analysis of the atomic charges reveals that propane C-H bond cleavage occurs heterolytically on PdO(101), and suggests that primary C-H bond activation is favored because a more stabilizing charge distribution develops within the 1-propyl transition state structures. Lastly, we conducted kinetic simulations using microkinetic models derived from the DFT-D3 structures, and find that the models reproduce the apparent activation energy for propane dissociation on PdO(101) to within 14% of that determined experimentally. We show that the entropic contributions of the adsorbed transition structures greatly exceed those predicted by the harmonic oscillator model, and that quantitative agreement with the apparent dissociation pre-factor may be obtained by approximating two of the frustrated adsorbate motions as free motions while treating the remaining modes as harmonic vibrations.  相似文献   

3.
We investigated regioselectivity in the initial C-H bond activation of propane σ-complexes on the PdO(101) surface using temperature programmed reaction spectroscopy (TPRS) experiments. We observe a significant kinetic isotope effect (KIE) in the initial C-H(D) bond cleavage of propane on PdO(101) such that the dissociation yield of C(3)H(8) is 2.7 times higher than that of C(3)D(8) at temperatures between 150 and 200 K. Measurements of the reactivity of (CH(3))(2)CD(2) and (CD(3))(2)CH(2) show that deuteration of the methyl groups is primarily responsible for the lower reactivity of C(3)D(8) relative to C(3)H(8), and thus that 1° C-H bond cleavage is the preferred pathway for propane activation on PdO(101). By analyzing the rate data within the context of a kinetic model for precursor-mediated dissociation, we estimate that 90% of the propane σ-complexes which dissociate on PdO(101) during TPRS do so by 1° C-H bond cleavage.  相似文献   

4.
An intermolecular C(sp3)? H amination using a Pd0/PAr3 catalyst was developed. The reaction begins with oxidative addition of R2N? OBz to a Pd0/PAr3 catalyst and subsequent cleavage of a C(sp3)? H bond by the generated Pd? NR2 intermediate. The catalytic cycle proceeds without the need for external oxidants in a similar manner to the extensively studied palladium(0)‐catalyzed C? H arylation reactions. The electron‐deficient triarylphosphine ligand is crucial for this C(sp3)? H amination reaction to occur.  相似文献   

5.
First‐principles calculations are carried out to examine the adsorption of acetylene over the Pd (111) surface. A hydrogen adsorption system is initially investigated to confirm the reliability of the selected calculation method. Adsorption energies, Mulliken‐populations, overlap populations, charge density, and projected density of states (PDOS) are then calculated in the optimised acetylene adsorption system. Results show that C2H2 molecule tends to adsorb through the threefold parallel‐bridge configuration that is computed to be the most stable. In this structure, the distance of the C? H bond is calculated to be 1.09 Å, and the C‐C‐H bond angle is 128°. The distance of the C? C bond in acetylene is 1.36 Å, increasing from 1.21 Å in the gas phase. Moreover, the C? C bond overlap population decreases from 1.98 to 1.38, revealing that the carbon configuration in C2H2 rehybridises from sp to sp2 and beyond. The obtained results are compared with available experimental studies on acetylene hydrogenation on single‐metal surfaces. The PDOS study indicates that a carbonaceous layer may generate on the metal surface during acetylene adsorption. The carbonaceous layer can affect the adsorption and reaction of acetylene, thereby inactivating the metal surface. Our experiments also show that Pd exhibits high catalytic activity.  相似文献   

6.
The site‐selective functionalization of unactivated C(sp3)?H bonds remains one of the greatest challenges in organic synthesis. Herein, we report on the site‐selective δ‐C(sp3)?H alkylation of amino acids and peptides with maleimides via a kinetically less favored six‐membered palladacycle in the presence of more accessible γ‐C(sp3)?H bonds. Experimental studies revealed that C?H bond cleavage occurs reversibly and preferentially at γ‐methyl over δ‐methyl C?H bonds while the subsequent alkylation proceeds exclusively at the six‐membered palladacycle that is generated by δ‐C?H activation. The selectivity can be explained by the Curtin–Hammett principle. The exceptional compatibility of this alkylation with various oligopeptides renders this procedure valuable for late‐stage peptide modifications. Notably, this process is also the first palladium(II)‐catalyzed Michael‐type alkylation reaction that proceeds through C(sp3)?H activation.  相似文献   

7.
Chemoselective reduction of the C=C bond in a variety of α,β‐unsaturated carbonyl compounds using supported palladium nanoparticles is reported. Three different heterogeneous catalysts were compared using 1 atm of H2: 1) nano‐Pd on a metal–organic framework (MOF: Pd0‐MIL‐101‐NH2(Cr)), 2) nano‐Pd on a siliceous mesocellular foam (MCF: Pd0‐AmP‐MCF), and 3) commercially available palladium on carbon (Pd/C). Initial studies showed that the Pd@MOF and Pd@MCF nanocatalysts were superior in activity and selectivity compared to commercial Pd/C. Both Pd0‐MIL‐101‐NH2(Cr) and Pd0‐AmP‐MCF were capable of delivering the desired products in very short reaction times (10–90 min) with low loadings of Pd (0.5–1 mol %). Additionally, the two catalytic systems exhibited high recyclability and very low levels of metal leaching.  相似文献   

8.
The first Co/Pd‐cocatalyzed intramolecular C?H amination and aziridination reactions were developed. Sulfamate esters were converted to oxathiazinanes by using CoPd(OAc)4 as catalyst and PhI(OAc)2 as oxidant. The mutual presence of both Co and Pd is crucial for the catalytic activity. This combination of two metals with simple acetate ligands provides an economical alternative to the Rh‐catalyzed insertion of nitrenoids into C?H bonds.  相似文献   

9.
The intramolecular coupling of two C(sp3)?H bonds to forge a C(sp3)?C(sp3) bond is enabled by 1,4‐Pd shift from a trisubstituted aryl bromide. Contrary to most C(sp3)?C(sp3) cross‐dehydrogenative couplings, this reaction operates under redox‐neutral conditions, with the C?Br bond acting as an internal oxidant. Furthermore, it allows the coupling between two moderately acidic primary or secondary C?H bonds, which are adjacent to an oxygen or nitrogen atom on one side, and benzylic or adjacent to a carbonyl group on the other side. A variety of valuable fused heterocycles were obtained from easily accessible ortho‐bromophenol and aniline precursors. The second C?H bond cleavage was successfully replaced with carbonyl insertion to generate other types of C(sp3)‐C(sp3) bonds.  相似文献   

10.
A palladium‐catalyzed enantioselective intramolecular σ‐bond cross‐exchange between C?I and C?C bonds is realized, providing chiral indanones bearing an alkyl iodide group and an all‐carbon quaternary stereocenter. Pd/TADDOL‐derived phosphoramidite is found to be an efficient catalytic system for both C?C bond cleavage and alkyl iodide reductive elimination. In addition to aryl iodides, aryl bromides can also be used for this transformation in the presence of KI. Density‐functional theory (DFT) calculation studies support the ring‐opening of cyclobutanones occuring through an oxidative addition/reductive elimination process involving PdIV species.  相似文献   

11.
Further study of our aerobic intermolecular cyclization of acrylic acid with 1‐octene to afford α‐methylene‐γ‐butyrolactones, catalyzed by the Pd(OCOCF3)2/Cu(OAc)2 ? H2O system, has clarified that the accumulation of water generated from oxygen during the reaction causes deactivation of the Cu cocatalyst. This prevents regeneration of the active Pd catalyst and, thus, has a harmful influence on the progress of the cyclization. As a result, both the substrate conversion and product yield are efficiently improved by continuous removal of water from the reaction mixture. Detailed analysis of the kinetic and spectroscopic measurements performed under the condition of continuous water removal demonstrates that the cyclization proceeds in four steps: 1) equilibrium coordination of 1‐octene to the Pd acrylate species, 2) Markovnikov‐type acryloxy palladation of 1‐octene (1,2‐addition), 3) intramolecular carbopalladation, and 4) β‐hydride elimination. Byproduct 2‐acryloxy‐1‐octene is formed by β‐hydride elimination after step 2). These cyclization steps fit the Michaelis–Menten equation well and β‐hydride elimination is considered to be a rate‐limiting step in the formation of the products. Spectroscopic data agree sufficiently with the existence of the intermediates bearing acrylate (Pd? O bond), η3‐C8H15 (Pd? C bond), or C11H19O2 (Pd? C bond) moieties on the Pd center as the resting‐state compounds. Furthermore, not only CuII, but also CuI, species are observed during the reaction time of 2–8 h when the reaction proceeds efficiently. This result suggests that the CuII species is partially reduced to the CuI species when the active Pd catalytic species are regenerated.  相似文献   

12.
In the presence of a catalyst system consisting of Pd(OAc)2, PCy3, and Zn(OAc)2, the reaction of alkynyl aryl ethers with bicycloalkenes, α,ß‐unsaturated esters, or heteroarenes results in the site‐selective cleavage of two C? H bonds followed by the formation of C? C bonds. In all cases, the alkynyloxy group acts as a directing group for the activation of an ortho C? H bond and as a hydrogen acceptor, thus rendering the use of additives such as an oxidant or base unnecessary.  相似文献   

13.
Palladium (Pd)‐catalyzed radical oxidative C?H carbonylation of alkanes is a useful method for functionalizing hydrocarbons, but there is still a lack of understanding of the mechanism, which restricts the application of this reaction. In this work, density functional theory (DFT) calculations were carried out to study the mechanism for a Pd‐catalyzed radical esterification reaction. Two plausible reaction pathways have been proposed and validated by DFT calculations. The computational results reveal that the generated alkyl radical prefers to add to the carbon monoxide (CO) molecule to form a carbonyl radical before bonding with the Pd species. Radical addition onto Pd followed by CO migratory insertion was unfavorable owing to the high energy barrier of the migratory insertion step. The regioselectivity of the C(sp3)?H carbonylation was also investigated by DFT. The results show that the regioselectivity is controlled by both the bond dissociation energy of the reacting C?H bond and the stability of the corresponding generated carbon radical. Competitive side reactions also affected the yield and regioselectivity owing to the rapid consumption of the stable radical intermediate.  相似文献   

14.
Quantum chemical insights into normal Pd‐C2(NHCR) and abnormal Pd‐C5(aNHCR) bonding, dominated by dispersion interactions in N‐hetereocyclic carbene complexes [PdCl2(NHCR)2] ( I , R = H; II , R = Ph; III , R = Mes (2,4,6‐trimethyl)phenyl)) and [PdCl2(NHCR)(aNHCR] ( IV , R = H; V , R = Ph; VI , R = Mes) have been investigated at DFT and DFT‐D3(BJ) level of theory with particular emphasis on the effects of the noncovalent interactions on the structures and the nature of Pd‐C2(NHCR) and Pd‐C5(aNHCR) bonds. The optimized geometries are good agreement with the experimental values. The Pd‐C bonds are essentially single bond. Hirshfeld charge distributions indicate that the abnormal aNHCR carbene ligand is relatively better electron donor than the normal NHCR carbene ligand. The C2 atom has larger %s contribution along Pd‐C2 bond than the C5 atom along Pd‐C5 bond. As a consequence the Pd‐C2(NHCR) bonds are relative stronger than the Pd‐C5(aNHCR) bonds. Thus, the results of natural hybrid orbital analysis support the key point of the present study. Calculations predict that for bulky substituent (R = Ph, Mes) at carbene, the Pd‐C2(NHCR) bond is stronger than Pd‐C5(aNHCR) bond due to large dispersion energy in [PdCl2(NHCR)2] than in [PdCl2(NHCR)(aNHCR)]. However, in case of non‐bulky substituent with small and almost equal contribution of dispersion energy, the Pd‐C2(NHCR) bond is relative weaker than Pd‐C5(aNHCR) bond. The bond dissociation energies are dependent on the R substituent, the DFT functional and the inclusion of dispersion interactions. Major point of this study is that the abnormal aNHCs are not always strongly bonded with metal center than the normal NHCs. Effects of dispersion interaction of substituent at nitrogen atoms of carbene ligand are found to play a crucial role on estimation of relative bonding strengths of the normal and abnormal aNHCs with metal center. © 2016 Wiley Periodicals, Inc.  相似文献   

15.
[Pd(P(Ar)(tBu)2)2] ( 1 , Ar=naphthyl) reacts with molecular oxygen to form PdII hydroxide dimers in which the naphthyl ring is cyclometalated and one equivalent of phosphine per palladium atom is released. This reaction involves the cleavage of both C? H and O? O bonds, two transformations central to catalytic aerobic oxidizations of hydrocarbons. Observations at low temperature suggest the initial formation of a superoxo complex, which then generates a peroxo complex prior to the C? H activation step. A transition state for energetically viable C? H activation across a Pd? peroxo bond was located computationally.  相似文献   

16.
α‐Halogenoacetanilides (X=F, Cl, Br) were examined as H‐bonding organocatalysts designed for the double activation of C?O bonds through NH and CH donor groups. Depending on the halide substituents, the double H‐bond involved a nonconventional C?H???O interaction with either a H?CXn (n=1–2, X=Cl, Br) or a H?CAr bond (X=F), as shown in the solid‐state crystal structures and by molecular modeling. In addition, the catalytic properties of α‐halogenoacetanilides were evaluated in the ring‐opening polymerization of lactide, in the presence of a tertiary amine as cocatalyst. The α‐dichloro‐ and α‐dibromoacetanilides containing electron‐deficient aromatic groups afforded the most attractive double H‐bonding properties towards C?O bonds, with a N?H???O???H?CX2 interaction.  相似文献   

17.
Most homogeneous catalysis relies on the design of metal complexes to trap and convert substrates or small molecules to value‐added products. Organometallic lanthanide compounds first gave a tantalizing glimpse of their potential for catalytic C? H bond transformations with the selective cleavage of one C? H bond in methane by bis(permethylcyclopentadienyl)lanthanide methyl [(η5‐C5Me5)2Ln(CH3)] complexes some 25 years ago. Since then, numerous metal complexes from across the periodic table have been shown to selectively activate hydrocarbon C? H bonds, but the challenges of closing catalytic cycles still remain; many f‐block complexes show great potential in this important area of chemistry.  相似文献   

18.
The first metal‐free catalytic hydroboration of carbonyl derivatives has been developed in which a catalytic amount of 1,3,2‐diazaphospholene effectively promotes a hydroboration reaction of aliphatic and aromatic aldehydes and ketones. The reaction mechanism involves the cleavage of both the P? O bond of the alkoxyphosphine intermediate and the B? H bond of pinacolborane as well as the formation of P? H and B? O bonds. Thus, the reaction proceeds through a non‐metal σ‐bond metathesis. Kinetic and computational studies suggest that the σ‐bond metathesis occurred in a stepwise but nearly concerted manner.  相似文献   

19.
20.
Methane is a most abundant and inexpensive hydrocarbon feedstock for the production of chemicals and fuels. However, it is extremely difficult to directly convert methane to higher hydrocarbons because the C?H bonds in methane are the most stable C?H bonds of all hydrocarbons. The activation of the C?H bonds in methane by using an efficient and mild route remains a daunting challenge. Here, we show that the inner surface structures of the pore walls in mesoporous α‐Fe2O3 possess excellent catalytic performance for methane activation and convert C?H bonds into the C?O bonds in an O2 atmosphere at 140 °C. We found that such unusual structures are mainly comprised of turbostratic ribbons and K crystal faces and have higher catalytic activity than the (110) plane. These results are without precedent in the history of catalysis chemistry and will provide a new pathway for designing and preparing highly efficient catalytic materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号