首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cargo transport along axons, a physiological process mediated by motor proteins, is essential for neuronal function and survival. A current limitation in the study of axonal transport is the lack of a robust imaging technique with a high spatiotemporal resolution to visualize and quantify the movement of motor proteins in real‐time and in different depth planes. Herein, we present a dynamic imaging technique that fully exploits the characteristics of upconversion nanoparticles. This technique can be used as a microscopic probe for the quantitative in situ tracking of retrograde transport neurons with single‐particle resolution in multilayered cultures. This study may provide a powerful tool to reveal dynamic neuronal activity and intra‐axonal transport function as well as any associated neurodegenerative diseases resulting from mutation or impairment in the axonal transport machinery.  相似文献   

2.
Fluorescent, cell‐permeable, organic nanoparticles based on self‐assembled π‐conjugated oligomers with high absorption cross‐sections and high quantum yields have been developed. The nanoparticles are generated with a tuneable density of amino groups for charge‐mediated cellular uptake by a straightforward self‐assembly protocol, which allows for control over size and toxicity. The results show that a single amino group per ten oligomers is sufficient to achieve cellular uptake. The non‐toxic nanoparticles are suitable for both one‐ and two‐photon cellular imaging and flow cytometry, and undergo very efficient cellular uptake.  相似文献   

3.
Ionic current rectification (ICR) based nanopipettes allow accurate monitoring of cellular behavior in single living cells. Herein, we proposed a 30 nm nanopipette functionalized with G‐quadruplex DNAzyme as an efficient biomimetic recognizer for ROS generation at subcellular level via the changes of current–voltage relationship. Taking advantages of the ultra‐small tip, the nanopipette could penetrate into a single living cell repeatedly or keep measuring for a long time without compromising the cellular functions. Coupled with precision nanopositioning system, generation of ROS in mitochondria in response to cell inflammation was determined with high spatial resolution. Meanwhile, the changes of aerobic metabolism in different cell lines under drug‐induced oxidative stress were monitored continuously. We believe that the ICR‐nanopipette could be developed as a powerful approach for the study of cellular activities via electrochemical imaging in living cells.  相似文献   

4.
We report a facile approach to fabricating low‐generation poly(amidoamine) (PAMAM) dendrimer‐stabilized gold nanoparticles (Au DSNPs) functionalized with folic acid (FA) for in vitro and in vivo targeted computed tomography (CT) imaging of cancer cells. In this study, amine‐terminated generation 2 PAMAM dendrimers were employed as stabilizers to form Au DSNPs without additional reducing agents. The formed Au DSNPs with an Au core size of 5.5 nm were covalently modified with the targeting ligand FA, followed by acetylation of the remaining dendrimer terminal amines to endow the particles with targeting specificity and improved biocompatibility. Our characterization data show that the formed FA‐modified Au DSNPs are stable at different pH values (5—8) and temperatures (4–50 °C), as well as in different aqueous media. MTT assay data along with cell morphology observations reveal that the FA‐modified Au DSNPs are noncytotoxic in the particle concentration range of 0–3000 nM . X‐ray attenuation coefficient measurements show that the CT value of FA‐modified Au DSNPs is much higher than that of Omnipaque (a clinically used CT contrast agent) at the same concentration of the radiodense elements (Au or iodine). Importantly, the FA‐modified Au DSNPs are able to specifically target a model cancer cell line (KB cells, a human epithelial carcinoma cell line) over‐expressing FA receptors and they enable targeted CT imaging of the cancer cells in vitro and the xenografted tumor model in vivo after intravenous administration of the particles. With the simple synthesis approach, easy modification, good cytocompatibility, and high X‐ray attenuation coefficient, the FA‐modified low‐generation Au DSNPs could be used as promising contrast agents for targeted CT imaging of different tumors over‐expressing FA receptors.  相似文献   

5.
Direct cellular imaging of the localization and dynamics of biomolecules helps to understand their function and reveals novel mechanisms at the single‐cell resolution. In contrast to routine fluorescent‐protein‐based protein imaging, technology for RNA imaging remains less well explored because of the lack of enabling technology. Herein, we report the development of an aptamer‐initiated fluorescence complementation (AiFC) method for RNA imaging by engineering a green fluorescence protein (GFP)‐mimicking turn‐on RNA aptamer, Broccoli, into two split fragments that could tandemly bind to target mRNA. When genetically encoded in cells, endogenous mRNA molecules recruited Split‐Broccoli and brought the two fragments into spatial proximity, which formed a fluorophore‐binding site in situ and turned on fluorescence. Significantly, we demonstrated the use of AiFC for high‐contrast and real‐time imaging of endogenous RNA molecules in living mammalian cells. We envision wide application and practical utility of this enabling technology to in vivo single‐cell visualization and mechanistic analysis of macromolecular interactions.  相似文献   

6.
Optical super‐resolution techniques allow fluorescence imaging below the classical diffraction limit of light. From a technology standpoint, recent methods are approaching molecular‐scale spatial resolution. However, this remarkable achievement is not easily translated to imaging of cellular components, since current labeling approaches are limited by either large label sizes (antibodies) or the sparse availability of small and efficient binders (nanobodies, aptamers, genetically‐encoded tags). In this work, we combined recently developed Affimer reagents with site‐specific DNA modification for high‐efficiency labeling and imaging using DNA‐PAINT. We assayed our approach using an actin Affimer. The small DNA‐conjugated affinity binders could provide a solution for efficient multitarget super‐resolution imaging in the future.  相似文献   

7.
Multimodal imaging and simultaneous therapy is highly desirable because it can provide complementary information from each imaging modality for accurate diagnosis and, at the same time, afford an imaging‐guided focused tumor therapy. In this study, indocyanine green (ICG), a near‐infrared (NIR) imaging agent and perfect NIR light absorber for laser‐mediated photothermal therapy, was successfully incorporated into superparamagnetic Fe3O4@mSiO2 core–shell nanoparticles to combine the merit of NIR/magnetic resonance (MR) bimodal imaging properties with NIR photothermal therapy. The resultant nanoparticles were homogenously coated with poly(allylamine hydrochloride) (PAH) to make the surface of the composite nanoparticles positively charged, which would enhance cellular uptake driven by electrostatic interactions between the positive surface of the nanoparticles and the negative surface of the cancer cell. A high biocompatibility of the achieved nanoparticles was demonstrated by using a cell cytotoxicity assay. Moreover, confocal laser scanning microscopy (CLSM) observations indicated excellent NIR fluorescent imaging properties of the ICG‐loaded nanoparticles. The relatively high r2 value (171.6 mM ?1 s?1) of the nanoparticles implies its excellent capability as a contrast agent for MRI. More importantly, the ICG‐loaded nanoparticles showed perfect NIR photothermal therapy properties, thus indicating their potential for simultaneous cancer diagnosis as highly effective NIR/MR bimodal imaging probes and for NIR photothermal therapy of cancerous cells.  相似文献   

8.
Development of Raman‐active materials with enhanced and distinctive Raman vibrations in the Raman‐silent region (1800–2800 cm−1) is highly required for specific molecular imaging of living cells with high spatial resolution. Herein, water‐soluble cationic conjugated polymers (CCPs), poly(phenylene ethynylene) (PPE) derivatives, are explored for use as alkyne‐state‐dependent Raman probes for living cell imaging due to synergetic enhancement effect of alkyne vibrations in Raman‐silent region compared to alkyne‐containing small molecules. The enhanced alkyne signals result from the integration of alkyne groups into the rigid backbone and the delocalized π‐conjugated structure. PPE‐based conjugated polymer nanoparticles (CPNs) were also prepared as Raman‐responsive nanomaterials for distinct imaging application. This work opens a new way into the development of conjugated polymer materials for enhanced Raman imaging.  相似文献   

9.
We report the optical second harmonic (SH) response from gold core-silver shell nanoparticles supported at a liquid-liquid interface in the spectral region where the second harmonic generation (SHG) frequency is resonant with the surface plasmon (SP) resonance excitation of the nanoparticles. We compare these results with that obtained by classical linear optical absorption spectroscopy and show that the nonlinear optical response is dominated by the SP resonance enhancement with negligible contributions from the interband transitions. As a result, the SH spectrum exhibits two clear SP resonance bands attributed to the two SP resonances of the composite nanostructure formed by the gold core-silver shell nanoparticles. Absolute values of the hyperpolarizabilities are measured by hyper Rayleigh scattering (HRS) and compared that of pure gold nanoparticles. The hyperpolarizability measured at a harmonic energy of 3.0 eV, enhanced through excitation of the high energy SP resonance of the nanoparticle, increases with the silver content whereas the hyperpolarizability measured at a harmonic energy of 2.4 eV, enhanced through the excitation of the low energy SP resonance of the nanoparticle, decreases because of the shift of this resonance away from the harmonic frequency. The hyperpolarizability determined by HRS and the square root of the SHG intensities, scaling with the nanoparticle hyperpolarizability, have similar trends with respect to the silver content indicative of closely related adsorption properties yielding similar surface concentrations at the liquid-liquid interface.  相似文献   

10.
A combinatorial screening revealed the peptide H‐His‐d ‐Leu‐d ‐Asp‐NH2 ( 1 ) as an additive for the generation of monodisperse, water‐soluble palladium nanoparticles with average diameters of 3 nm and stabilities of over 9 months. The tripeptide proved to be also applicable for the size‐controlled formation of other noble‐metal nanoparticles (Pt and Au). Studies with close analogues of peptide 1 revealed a specific role of each of the three amino acids for the formation and stabilization of the nanoparticles. These data combined with microscopic and spectroscopic analyses provided insight into the structure of the self‐assembled peptidic monolayer around the metal core. The results open interesting prospects for the development of functionalized metal nanoparticles.  相似文献   

11.
A procedure is described for the liquid‐liquid extraction and recovery of bismuth(III) from succinate solution using 2‐octylaminopyridine (2‐OAP) as an extractant. The quantitative extraction of bismuth(III) occurs from 0.004 to 0.007 M sodium succinate solution of pH 2.5‐10 using 0.036 M 2‐OAP in chloroform. The extracted metal ion has been recovered by stripping with (3 × 10 mL) 0.5 M nitric acid. The log‐log plot of distribution ratio versus succinate concentration and distribution ratio versus 2‐OAP concentration gave slopes of 2.0 and 0.9, respectively, indicating a metal‐succinate ratio of 1:2 and a metal: 2‐OAP ratio of 1:1. The ion pair complex has a high distribution ratio in chloroform, while other solvents are poor. The extractants are stable towards prolonged acid contacts and there is no loss in its extraction efficiency even after recycling ten times. The extraction behaviour of some commonly associated metal ions, namely Ga(III), Cd(II), Zn(II), Cr(VI), Cu(II), Ba(II), Sb(III), Sn(IV), Tl(I) and Pb(II), has also been investigated. Based on partition data, conditions have been identified for attaining some separations of bismuth(III) from other metal ions; these conditions are extended for the recovery of pure bismuth from ore and alloys. Thermodynamic quantities for the extraction process were calculated.  相似文献   

12.
Green synthesized silver nanoparticles (AgNPs) have enormous applications. Hence, there is an increasing demand to explore diverse bioresources for AgNP fabrication to make the process more cost‐effective and rapid as possible. Due to the abundantly present hydroxyl groups of rice starch, it provides ideal sites for metal ion complexation and thereby synthesis of nanoparticles with promising activity. So the study was designed to develop rapid, eco‐friendly and cost‐effective method for green AgNP synthesis using boiled rice water starch in the presence of sunlight irradiation. The starch‐capped nanoparticles (sAgNPs) formed in the study were found to have the surface plasmon absorbance at 439 nm. The study showed optimum yield of sAgNPs when 25% rice starch was treated with aqueous 1 mM AgNO3 for 15 min in the presence of sunlight. Fourier transform infrared spectroscopy analysis provided mechanistic insight into the role of –OH groups of starch in the reduction of AgNO3 to sAgNPs. On further characterization by X‐ray diffraction analysis, the sAgNPs were identified to have FCC crystal structure. At the same time, high‐resolution transmission electron microscopic analysis showed majority of sAgNPs to have spherical morphology, and dynamic light scattering study revealed the average particle size as 36.3 nm. Further confirmation on presence of AgNPs was carried out by energy‐dispersive X‐ray spectroscopy. Moreover, the sAgNPs exhibited promising antibacterial activity against foodborne pathogens, Salmonella Typhimurium and Staphylococcus aureus.  相似文献   

13.
Precision phototheranostics, including photoacoustic imaging and photothermal therapy, requires stable photothermal agents. Developing such agents with high stability and high photothermal conversion efficiency (PTCE) remains a considerable challenge. Herein, we introduce a new photothermal agent based on water‐soluble quaterrylenediimide (QDI) that can self‐assemble into nanoparticles (QDI‐NPs) in aqueous solution. Incorporating polyethylene glycol (PEG) into the QDI core significantly enhances both physiological stability and biocompatibility of QDI‐NPs. The highly photostable QDI‐NPs offer advantages including intense absorption in the near‐infrared (NIR) and high PTCE of up to 64.7±4 %. This is higher than that of commercial indocyanine green (ICG). Their small size (ca. 10 nm) enables sustained retention in deep tumor sites and also proper clearance from the body. QDI‐NPs allow high‐resolution photoacoustic imaging and efficient 808 nm laser‐triggered photothermal therapy of cancer in vivo.  相似文献   

14.
Jingjing Feng  Xuan Cao  Qi Pan  Yan He 《Electrophoresis》2019,40(16-17):2227-2234
Direct observation and characterization of individual noble metal nanoparticles (MNPs) and their chemical reactions have attracted much attention owing to their unique physical and chemical properties and extensive applications. To achieve high‐throughput information‐rich evaluation of MNPs, it would be advantageous to combine highly efficient microcolumn separation technology with on‐column high resolution plasmonic imaging technique. Here, with a chromatic aberration‐suppressed supercontinuum laser light‐sheet scattering imaging system and colorimetric detection, we monitored oxidation process of single gold nanorods inside a capillary under gravity driven flow, and observed heterogenous reaction intermediates and pathways for different MNP surface modifications. The results suggest that molecular interactions and bindings with MNPs have a significant impact on their reaction kinetics. This high‐throughput on‐line single particle detection technique could be potentially applied to chemical and biochemical reaction studies of other MNPs.  相似文献   

15.
Precision phototheranostics, including photoacoustic imaging and photothermal therapy, requires stable photothermal agents. Developing such agents with high stability and high photothermal conversion efficiency (PTCE) remains a considerable challenge. Herein, we introduce a new photothermal agent based on water‐soluble quaterrylenediimide (QDI) that can self‐assemble into nanoparticles (QDI‐NPs) in aqueous solution. Incorporating polyethylene glycol (PEG) into the QDI core significantly enhances both physiological stability and biocompatibility of QDI‐NPs. The highly photostable QDI‐NPs offer advantages including intense absorption in the near‐infrared (NIR) and high PTCE of up to 64.7±4 %. This is higher than that of commercial indocyanine green (ICG). Their small size (ca. 10 nm) enables sustained retention in deep tumor sites and also proper clearance from the body. QDI‐NPs allow high‐resolution photoacoustic imaging and efficient 808 nm laser‐triggered photothermal therapy of cancer in vivo.  相似文献   

16.
We prepared the PLGA‐loaded anti‐cancer drug and coated it with quantum dots to make it a dual‐function nanoparticles, and analyzed its potential use in cellular imaging and curing cancers. Two cancer cell lines, paclitaxel‐sensitive KB and paclitaxel‐resistant KB paclitaxel‐50 cervical carcinoma cells, were the relativistic models for analysis of the cytotoxicity of free paclitaxel and paclitaxel‐loaded PLGA conjugated with quantum‐dot nanoparticles. The paclitaxel‐loaded PLGA conjugated with quantum dots nanoparticles were significantly more cytotoxic than the free paclitaxel drug in paclitaxel‐resistant KB paclitaxel‐50 cells. This might have been because the cancer cells developed multi‐drug resistance (MDR), which hampered the action of free paclitaxel by pumping its molecules to extracellular areas. Addition of verapamil, a P‐glycoprotein inhibitor, reversed the MDR mechanism and significantly reduced KB paclitaxel‐50 cell viability. As a result, KB paclitaxel‐50 was highly associated with MDR on the cell membrane. The cytotoxicity results indicated that PLGA nanoparticles served as drug carriers and protected the drugs from MDR‐accelerated efflux. Combined quantum dots with PLGA nanoparticles allowed additional functionality for cellular imaging.  相似文献   

17.
The development of biodegradable inorganic nanoparticles with a tumor microenvironment‐activated therapeutic mode of action is urgently needed for precision cancer medicine. Herein, the synthesis of ultrathin lanthanide nanoscrolls (Gd2O3 NSs) is reported, which biodegrade upon encountering the tumor microenvironment. The Gd2O3 NSs showed highly controlled magnetic properties, which enabled their high‐resolution magnetic resonance imaging (MRI). Importantly, Gd2O3 NSs degrade in a pH‐responsive manner and selectively penetrate tumor tissue, enabling the targeted release of anti‐cancer drugs. Gd2O3 NSs can be efficiently loaded with an anti‐cancer drug (DOX, 80 %) and significantly inhibit tumor growth with negligible cellular and tissue toxicity both in vitro and in vivo. This study may provide a novel strategy to design tumor microenvironment‐responsive inorganic nanomaterials for biocompatible bioimaging and biodegradation‐enhanced cancer therapy.  相似文献   

18.
Sonodynamic therapy (SDT) has the advantages of high penetration, non‐invasiveness, and controllability, and it is suitable for deep‐seated tumors. However, there is still a lack of effective sonosensitizers with high sensitivity, safety, and penetration. Now, ultrasound (US) and glutathione (GSH) dual responsive vesicles of Janus Au‐MnO nanoparticles (JNPs) were coated with PEG and a ROS‐sensitive polymer. Upon US irradiation, the vesicles were disassembled into small Janus Au‐MnO nanoparticles (NPs) with promoted penetration ability. Subsequently, GSH‐triggered MnO degradation simultaneously released smaller Au NPs as numerous cavitation nucleation sites and Mn2+ for chemodynamic therapy (CDT), resulting in enhanced reactive oxygen species (ROS) generation. This also allowed dual‐modality photoacoustic imaging in the second near‐infrared (NIR) window and T1‐MR imaging due to the released Mn2+, and inhibited orthotopic liver tumor growth via synergistic SDT/CDT.  相似文献   

19.
The need of cellular and sub‐cellular spatial resolution in laser desorption ionization (LDI)/matrix‐assisted LDI (MALDI) imaging mass spectrometry (IMS) necessitates micron and sub‐micron laser spot sizes at biologically relevant sensitivities, introducing significant challenges for MS technology. To this end, we have developed a transmission geometry vacuum ion source that allows the laser beam to irradiate the back side of the sample. This arrangement obviates the mechanical/ion optic complications in the source by completely separating the optical lens and ion optic structures. We have experimentally demonstrated the viability of transmission geometry MALDI MS for imaging biological tissues and cells with sub‐cellular spatial resolution. Furthermore, we demonstrate that in conjunction with new sample preparation protocols, the sensitivity of this instrument is sufficient to obtain molecular images at sub‐micron spatial resolution. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
The currently understood principles about light–molecule interactions are limited, and thus scientific scope beyond current theories is rarely harvested. Herein we demonstrate supracence phenomena, in which the emitted photons have more energy than the absorbed photons. The extra energy comes from couplings of the absorbed and emitted photon to molecular phonons, whose potentials are constantly exchanging with molecular quantum energy and the environment. Thus, supracence is a linear optical process rather than a nonlinear optical process, such as second harmonic generation. Because supracence results in cooled molecular phonons and thus cooled molecules, behavior opposite to that of hot fluorescing emitters is expected. This report reveals certain supracence principles while contrasting fluorescence with supracence in high‐resolution imaging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号