首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Real‐time band‐selective homonuclear 1H decoupling during data acquisition of z‐filtered J‐resolved spectroscopy produces 1H‐decoupled 1H NMR spectra and leads to sensitivity enhancement and improved resolution, and thus aids the measurement of J couplings and residual dipolar couplings in crowded regions of 1H NMR spectrum. High quality spectra from peptides, organic molecules, and also from enantiomers dissolved in weakly aligned chiral media are reported.  相似文献   

2.
The chemical synthesis of deuterated isomeric 6,7‐dihydroxydodecanoic acid methyl esters 1 and the subsequent metabolism of esters 1 and the corresponding acids 1a in liquid cultures of the yeast Saccharomyces cerevisiae was investigated. Incubation experiments with (6R,7R)‐ or (6S,7S)‐6,7‐dihydroxy(6,7‐2H2)dodecanoic acid methyl ester ((6R,7R)‐ or (6S,7S)‐(6,7‐2H2)‐ 1 , resp.) and (±)‐threo‐ or (±)‐erythro‐6,7‐dihydroxy(6,7‐2H2)dodecanoic acid ((±)‐threo‐ or (±)‐erythro‐(6,7‐2H2)‐ 1a , resp.) elucidated their metabolic pathway in yeast (Tables 1–3). The main products were isomeric 2H‐labeled 5‐hydroxydecano‐4‐lactones 2 . The absolute configuration of the four isomeric lactones 2 was assigned by chemical synthesis via Sharpless asymmetric dihydroxylation and chiral gas chromatography (Lipodex ® E). The enantiomers of threo‐ 2 were separated without derivatization on Lipodex ® E; in contrast, the enantiomers of erythro‐ 2 could be separated only after transformation to their 5‐O‐(trifluoroacetyl) derivatives. Biotransformation of the methyl ester (6R,7R)‐(6,7‐2H2)‐ 1 led to (4R,5R)‐ and (4S,5R)‐(2,5‐2H2)‐ 2 (ratio ca. 4 : 1; Table 2). Estimation of the label content and position of (4S,5R)‐(2,5‐2H2)‐ 2 showed 95% label at C(5), 68% label at C(2), and no 2H at C(4) (Table 2). Therefore, oxidation and subsequent reduction with inversion at C(4) of 4,5‐dihydroxydecanoic acid and transfer of 2H from C(4) to C(2) is postulated. The 5‐hydroxydecano‐4‐lactones 2 are of biochemical importance: during the fermentation of Streptomyces griseus, (4S,5R)‐ 2 , known as L‐factor, occurs temporarily before the antibiotic production, and (?)‐muricatacin (=(4R,5R)‐5‐hydroxy‐heptadecano‐4‐lactone), a homologue of (4R,5R)‐ 2 , is an anticancer agent.  相似文献   

3.
Some new N‐4‐Fluorobenzoyl phosphoric triamides with formula 4‐F‐C6H4C(O)N(H)P(O)X2, X = NH‐C(CH3)3 ( 1 ), NH‐CH2‐CH=CH2 ( 2 ), NH‐CH2C6H5 ( 3 ), N(CH3)(C6H5) ( 4 ), NH‐CH(CH3)(C6H5) ( 5 ) were synthesized and characterized by 1H, 13C, 31P NMR, IR and Mass spectroscopy and elemental analysis. The structures of compounds 1 , 3 and 4 were investigated by X‐ray crystallography. The P=O and C=O bonds in these compounds are anti. Compounds 1 and 3 form one dimensional polymeric chain produced by intra‐ and intermolecular ‐P=O···H‐N‐ hydrogen bonds. Compound 4 forms only a centrosymmetric dimer in the crystalline lattice via two equal ‐P=O···H‐N‐ hydrogen bonds. 1H and 13C NMR spectra show two series of signals for the two amine groups in compound 1 . This is also observed for the two α‐methylbenzylamine groups in 5 due to the presence of chiral carbon atom in molecule. 13C NMR spectrum of compound 4 shows that 2J(P,Caliphatic) coupling constant for CH2 group is greater than for CH3 in agreement with our previous study. Mass spectra of compounds 1 ‐ 3 (containing 4‐F‐C6H4C(O)N(H)P(O) moiety) indicate the fragments of amidophosphoric acid and 4‐F‐C6H4CN+ that formed in a pseudo McLafferty rearrangement pathway. Also, the fragments of aliphatic amines have high intensity in mass spectra.  相似文献   

4.
The C3‐symmetric propeller‐chiral compounds (P,P,P)‐ 1 and (M,M,M)‐ 1 with planar π‐cores perpendicular to the C3‐axis were synthesized in optically pure states. (P,P,P)‐ 1 possesses two distinguishable propeller‐chiral π‐faces with rims of different heights named the (P/L)‐face and (P/H)‐face. Each face is configurationally stable because of the rigid structure of the helicenes contained in the π‐core. (P,P,P)‐ 1 formed dimeric aggregates in organic solutions as indicated by the results of 1H NMR, CD, and UV/Vis spectroscopy and vapor pressure osmometry analyses. The (P/L)/(P/L) interactions were observed in the solid state by single‐crystal X‐ray analysis, and they were also predominant over the (P/H)/(P/H) and (P/L)/(P/H) interactions in solution, as indicated by the results of 1H and 2D NMR spectroscopy analyses. The dimerization constant was obtained for a racemic mixture, which showed that the heterochiral (P,P,P)‐ 1 /(M,M,M)‐ 1 interactions were much weaker than the homochiral (P,P,P)‐ 1 /(P,P,P)‐ 1 interactions. The results indicated that the propeller‐chiral (P/L)‐face interacts with the (P/L)‐face more strongly than with the (P/H)‐face, (M/L)‐face, and (M/H)‐face. The study showed the π‐face‐selective aggregation and π‐face chiral recognition of the configurationally stable propeller‐chiral molecules.  相似文献   

5.
Chiral α‐hydroxyl acids are of great importance in chemical synthesis. Current methods for recognizing their chirality by 1H NMR are limited by their small chemical shift differences and intrinsic solubility problem in organic solvents. Herein, we developed three YbDO3A(ala)3 derivatives to recognize four different commercially available chiral α‐hydroxyl acids in aqueous solution through 1H NMR and chemical exchange saturation transfer (CEST) spectroscopy. The shift difference between chiral α‐hydroxyl acid observed by proton and CEST NMR ranged from 15–40 and 20–40 ppm, respectively. Our work demonstrates for first time, that even one chiral center on the side‐arm chain of cyclen could set the stage for rotation of the other two non‐chiral side chains into a preferred position. This is ascribed to the lower energy state of the structure. The results show that chiral YbDO3A‐like complexes can be used to discriminate chiral α‐hydroxyl acids with a distinct signal difference.  相似文献   

6.
Herein, we report the synthesis of the enantiomers of trinorbornane, a tetracyclic saturated hydrocarbon with the chemical formula C11H16. The preparation of these rigid carbon scaffolds was enabled by the successful chiral separation of its tricyclic precursor, thus allowing the enantiomers to be synthesized through a reductive radical cyclization reaction. Assignment of the absolute conformation of the enantiomers was achieved through VCD experiments. Further, we report an alternative cyclization procedure providing access to hydroxyl and phenyl sulfone functionalized trinorbornanes.  相似文献   

7.
Vibrational circular dichroism (VCD) spectroscopy has a unique specificity to chirality and is highly sensitive to the conformational equilibria of chiral molecules. On the other hand, the matrix‐isolation (MI) technique allows substantial control over sample compositions, such as the sample(s)/matrix ratio and the ratio among different samples, and yields spectra with very narrow bandwidths. We combined VCD spectroscopy with the MI technique to record MI‐VCD and MI‐vibrational absorption spectra of 3‐butyn‐2‐ol at different MI temperatures, which allowed us to investigate the conformational distributions of its monomeric and binary species. Good mirror‐imaged MI‐VCD spectra of opposite enantiomers were achieved. The related conformational searches were performed for the monomer and the binary aggregate and their vibrational absorption and VCD spectra were simulated. The well‐resolved experimental MI‐VCD bands provide the essential mean to assign the associated vibrational absorption spectral features correctly to a particular conformation in case of closely spaced bands. By varying the matrix temperature, we show that one can follow the self‐aggregation process of 3‐butyn‐2‐ol and confidently correlate the MI‐VCD spectral features with those obtained for a 0.1 M CCl4 solution and as a neat liquid at room temperature. Comparison of the aforementioned experimental VCD spectra shows conclusively that there is a substantial contribution from the 3‐butyn‐2‐ol aggregate even at 0.1 M concentration. This spectroscopic combination will be powerful for studying self‐aggregation of chiral molecules, and chirality transfer from a chiral molecule to an interacting achiral molecule and in electron donor–acceptor chiral complexes.  相似文献   

8.
In this study, a series of chiral stationary phases based on N‐[(4‐methylphenyl)sulfonyl]‐l ‐leucine amide, whose enantiorecognition property has never been studied, were synthesized. Their enantioseparation abilities were chromatographically evaluated by 67 enantiomers. The chiral stationary phase derived from N‐[(4‐methylphenyl)sulfonyl]‐l ‐leucine showed much better enantioselectivities than that based on N‐(4‐methylbenzoyl)‐l ‐leucine amide. The construction of C2 symmetric chiral structure greatly improved the enantiorecognition performance of the stationary phase. The C2 symmetric chiral stationary phase exhibited superior enantioresolutions to other chiral stationary phases for most of the chiral analytes, especially for the chiral analytes with C2 symmetric structures. By comparing the enantioseparations of the enantiomers with similar structures, the importance of hydrogen bond interaction, π–π interaction, and steric hindrance on enantiorecognition was elucidated. The enantiorecognition mechanism of transN,N′‐(1,2‐diphenyl‐1,2‐ethanediyl)bis‐acetamide, which had an excellent separation factor on the C2 symmetric chiral stationary phase, was investigated by 1H‐NMR spectroscopy and 2D 1H‐1H nuclear overhauser enhancement spectroscopy.  相似文献   

9.
The reagent Me3Si(C6F5) was used for the preparation of a series of perfluorinated, pentafluorophenyl‐substituted 3,6‐dihydro‐2H‐1,4‐oxazines ( 2 – 8 ), which, otherwise, would be very difficult to synthesize. Multiple pentafluorophenylation occurred not only on the heterocyclic ring of the starting compound 1 (Scheme), but also in para position of the introduced C6F5 substituent(s) leading to compounds with one to three nonafluorobiphenyl (C12F9) substituents. While the tris(pentafluorophenyl)‐substituted compound 3 could be isolated as the sole product by stoichiometric control of the reagent, the higher‐substituted compounds 5 – 8 could only be obtained as mixtures. The structures of the oligo(perfluoroaryl) compounds were confirmed by 19F‐ and 13C‐NMR, MS, and/or X‐ray crystallography. DFT simulations of the 19F‐ and 13C‐NMR chemical shifts were performed at the B3LYP‐GIAO/6‐31++G(d,p) level for geometries optimized by the B3LYP/6‐31G(d) level, a technique that proved to be very useful to accomplish full NMR assignment of these complex products.  相似文献   

10.
Synthetic and structural aspects of the phosphanylation of 1,3‐benzazaphospholides 1Li , ambident benzofused azaphosphacyclopentadienides, are presented. The unusual properties of phospholyl‐1,3,2‐diazaphospholes inspired us to study the coupling of 1Li with chlorodiazaphospholene 2 , which led to the N‐substituted product 3 . Reaction of 1Li with chlorodiphenyl‐ and chlorodicyclohexylphosphane likewise gave N‐phosphanylbenzazaphospholes 4 and 5 , whereas with the more bulky di‐tert‐butyl‐ and di‐1‐adamantylchlorophosphanes, the diphosphanes 6 and 7 are obtained; in the case of 7 they are isolated as a dimeric LiCl(THF) adduct. Structural information was provided by single‐crystal X‐ray diffraction and solution NMR spectroscopy experiments. 2D exchange spectroscopy confirmed the existence of two rotamers of the aminophosphane 5 at room temperature; variable‐temperature NMR spectroscopy studies of 6 revealed two dynamic processes, low‐temperature inversion at ring phosphorus (ΔH=22 kJ mol?1, ΔS=2 J K?1 mol?1) and very low‐temperature rotation of the tBu2P group. Quantum chemical studies give evidence that 2‐unsubstituted benzazaphospholides prefer N‐phosphanylation, even with bulky chlorophosphanes, and that substituents at the 2‐position of the heterocycle are crucial for the occurrence of P–N rotamers and for switching to alternative P‐substitution, beyond a threshold steric bulk, by both P‐ and 2‐position substituents.  相似文献   

11.
The synthesis and the chiroptical properties of the two enantiomers of the hexacarboxylic acid cryptophane-A derivative, 1, are described in this article. The chiroptical and binding properties of 1 toward achiral and chiral guests have been investigated in water under basic conditions by polarimetry, electronic circular dichroism (ECD), vibrational circular dichroism (VCD), and (1)H NMR spectroscopy. These experiments reveal that the (1)H NMR spectra of 1 are very sensitive to the nature of the guest trapped in its cavity whereas ECD and VCD spectra remain unchanged. We also show that the two enantiomers of 1 are able to distinguish between the two enantiomers of a series of small chiral epoxides. The enantiodiscrimination increases with the size of the chiral guest whereas the corresponding binding constants decrease. In contrast to what was observed for other water-soluble cryptophanes, the molecular recognition process is found independent of the nature of the counterions surrounding host 1, shedding light on the importance of the chemical structure of cryptophanes on their binding and chiroptical properties.  相似文献   

12.
Taking advantage of an improved synthesis of [Ti(η6‐C6H6)2], we report here the first examples of ansa‐bridged bis(benzene) titanium complexes. Deprotonation of [Ti(η6‐C6H6)2] with nBuLi in the presence of N,N,N′,N′′,N′′‐pentamethyldiethylenetriamine (pmdta) leads to the corresponding 1,1′‐dilithio salt [Ti(η6‐C6H5Li)2] ? pmdta that enables the preparation of the first one‐ and two‐atom‐bridged complexes by simple salt metathesis. The ansa complexes were fully characterized (NMR spectroscopy, UV/Vis spectroscopy, elemental analysis, and X‐ray crystallography) and further studied electrochemically and computationally. Moreover, [Ti(η6‐C6H6)2] is found to react with the Lewis base 1,3‐dimethylimidazole‐2‐ylidene (IMe) to give the bent sandwich complex [Ti(η6‐C6H6)2(IMe)].  相似文献   

13.
The two single‐enantiomer phosphoric triamides N‐(2,6‐difluorobenzoyl)‐N′,N′′‐bis[(S)‐(−)‐α‐methylbenzyl]phosphoric triamide, [2,6‐F2‐C6H3C(O)NH][(S)‐(−)‐(C6H5)CH(CH3)NH]2P(O), denoted L‐1 , and N‐(2,6‐difluorobenzoyl)‐N′,N′′‐bis[(R)‐(+)‐α‐methylbenzyl]phosphoric triamide, [2,6‐F2‐C6H3C(O)NH][(R)‐(+)‐(C6H5)CH(CH3)NH]2P(O), denoted D‐1 , both C23H24F2N3O2P, have been investigated. In their structures, chiral one‐dimensional hydrogen‐bonded architectures are formed along [100], mediated by relatively strong N—H…O(P) and N—H…O(C) hydrogen bonds. Both assemblies include the noncentrosymmetric graph‐set motifs R22(10), R21(6) and C22(8), and the compounds crystallize in the chiral space group P1. Due to the data collection of L‐1 at 120 K and of D‐1 at 95 K, the unit‐cell dimensions and volume show a slight difference; the contraction in the volume of D‐1 with respect to that in L‐1 is about 0.3%. The asymmetric units of both structures consist of two independent phosphoric triamide molecules, with the main difference being seen in one of the torsion angles in the OPNHCH(CH3)(C6H5) part. The Hirshfeld surface maps of these levo and dextro isomers are very similar; however, they are near mirror images of each other. For both structures, the full fingerprint plot of each symmetry‐independent molecule shows an almost asymmetric shape as a result of its different environment in the crystal packing. It is notable that NMR spectroscopy could distinguish between compounds L‐1 and D‐1 that have different relative stereocentres; however, the differences in chemical shifts between them were found to be about 0.02 to 0.001 ppm under calibrated temperature conditions. In each molecule, the two chiral parts are also different in NMR media, in which chemical shifts and P–H and P–C couplings have been studied.  相似文献   

14.
The synthesis and crystal structures of two new rhenium(I) complexes obtained utilizing benzhydroxamic acid (BHAH) and 3‐hydroxyflavone (2‐phenylchromen‐4‐one, FlavH) as bidentate ligands, namely tetraethylammonium fac‐(benzhydroxamato‐κ2O,O′)bromidotricarbonylrhenate(I), (C8H20N)[ReBr(C7H6NO2)(CO)3], 1 , and fac‐aquatricarbonyl(4‐oxo‐2‐phenylchromen‐3‐olato‐κ2O,O′)rhenium(I)–3‐hydroxyflavone (1/1), [Re(C15H9O3)(CO)3(H2O)]·C15H10O3, 3 , are reported. Furthermore, the crystal structure of free 3‐hydroxyflavone, C15H10O3, 4 , was redetermined at 100 K in order to compare the packing trends and solid‐state NMR spectroscopy with that of the solvate flavone molecule in 3 . The compounds were characterized in solution by 1H and 13C NMR spectroscopy, and in the solid state by 13C NMR spectroscopy using the cross‐polarization magic angle spinning (CP/MAS) technique. Compounds 1 and 3 both crystallize in the triclinic space group P with one molecule in the asymmetric unit, while 4 crystallizes in the orthorhombic space group P212121. Molecules of 1 and 3 generate one‐dimensional chains formed through intermolecular interactions. A comparison of the coordinated 3‐hydroxyflavone ligand with the uncoordinated solvate molecule and free molecule 4 shows that the last two are virtually completely planar due to hydrogen‐bonding interactions, as opposed to the former, which is able to rotate more freely. The differences between the solid‐ and solution‐state 13C NMR spectra of 3 and 4 are ascribed to inter‐ and intramolecular interactions. The study also investigated the potential labelling of both bidentate ligands with the corresponding fac99mTc‐tricarbonyl synthon. All attempts were unsuccessful and reasons for this are provided.  相似文献   

15.
The reaction of 1, 8‐dilithionaphthalene 2 , with 2 equivalents of rac‐Me(C6F5)PCl, gave a 6 : 1 mixture of rac‐ and meso‐1, 8‐di(methyl‐pentafluorophenylphosphino)naphthalene (dmfppn, rac‐ 3h and meso‐ 3h ), but no reaction was observed when the sterically crowded rac‐tBu(C6F5)PCl was used. In 31P NMR experiments, rac‐ 3h and mmeso‐ 3h exhibited characteristic signals (virtual quintets), which indicate that there is significant coupling through space (3JPF + 7 JPF ≈ 15 Hz). Compound rac‐ 3h was isolated by fractional crystallisation and treated with aqueous H2O2 to yield the corresponding bis‐phosphine dioxide, rac‐ 7h . In contrast to rac‐ 3h , there was no sign of through‐space coupling in rac‐ 7h , which again illustrates that the latter operates via the lone pairs at phosphorus. Platinum(II) complexes were prepared from the new, P‐chiral chelate rac‐ 3h , and the related ligand 1, 8‐di(tert‐butylphenylphosphino) naphthalene (rac‐dtbppn, rac‐ 3e ). All isolated new compounds were characterised by multinuclear NMR and IR spectroscopy, mass spectrometry, and elemental analysis. Single‐crystal X‐ray structure determinations were performed for rac‐dmfppn (rac‐ 3h ), rac‐[PtCl2(dtbppn)] (rac‐ 17e ), and rac‐[PtCl2(dmfppn)] (rac‐ 17h ). rac‐ 3h displays crystallographic twofold symmetry. In rac‐ 17h , the electron‐withdrawing effect of the C6F5 groups causes a shortening of the Pt—P bond to ca. 220 pm (cf. 223 pm in rac‐ 17e ).  相似文献   

16.
Some new N‐carbonyl, phosphoramidates with formula C6H5C(O)N(H)P(O)R2 (R = NC3H6 ( 1 ), NC6H12 ( 2 ), NHCH2CH=CH2 ( 3 ), N(C3H7)2 ( 4 )) and CCl3C(O)N(H)P(O)R′2 (R′ = NC3H6 ( 5 ), NHCH2CH=CH2 ( 6 )) were synthesized and characterized by 1H, 13C, 31P NMR and IR spectroscopy and elemental analysis. The structures were determined for compounds 1 and 2 . Compound 1 exists as two crystallographically independent molecules in crystal lattice. Both compounds 1 and 2 produced dimeric aggregates via intermolecular ‐P=O…H‐N‐ hydrogen bonds, which in compound 2 is a centrosymmetric dimer. In compounds with four‐membered ring amine groups, 3J(P,C)>2J(P,C), in agreement with our previous studies about five‐membered ring amine groups. Also, 3J(P,C) values in compounds 1 and 5 are greater than in compounds with five‐, six‐ and seven‐membered ring amine groups.  相似文献   

17.
Epoxides of fatty acids are hydrolyzed by epoxide hydrolases (EHs) into dihydroxy fatty acids which are of particular interest in the mammalian leukotriene pathway. In the present report, the analysis of the configuration of dihydroxy fatty acids via their respective hydroxylactones is described. In addition, the biotransformation of (±)‐erythro‐7,8‐ and ‐3,4‐dihydroxy fatty acids in the yeast Saccharomyces cerevisiae was characterized by GC/EI‐MS analysis. Biotransformation of chemically synthesized (±)‐erythro‐7,8‐dihydroxy(7,8‐2H2)tetradecanoic acid ((±)‐erythro‐ 1 ) in the yeast S. cerevisiae resulted in the formation of 5,6‐dihydroxy(5,6‐2H2)dodecanoic acid ( 6 ), which was lactonized into (5S,6R)‐6‐hydroxy(5,6‐2H2)dodecano‐5‐lactone ((5S,6R)‐ 4 ) with 86% ee and into erythro‐5‐hydroxy(5,6‐2H2)dodecano‐6‐lactone (erythro‐ 8 ). Additionally, the α‐ketols 7‐hydroxy‐8‐oxo(7‐2H1)tetradecanoic acid ( 9a ) and 8‐hydroxy‐7‐oxo(8‐2H1)tetradecanoic acid ( 9b ) were detected as intermediates. Further metabolism of 6 led to 3,4‐dihydroxy(3,4‐2H2)decanoic acid ( 2 ) which was lactonized into 3‐hydroxy(3,4‐2H2)decano‐4‐lactone ( 5 ) with (3R,4S)‐ 5 =88% ee. Chemical synthesis and incubation of (±)‐erythro‐3,4‐dihydroxy(3,4‐2H2)decanoic acid ((±)‐erythro‐ 2 ) in yeast led to (3S,4R)‐ 5 with 10% ee. No decano‐4‐lactone was formed from the precursors 1 or 2 by yeast. The enantiomers (3S,4R)‐ and (3R,4S)‐3,4‐dihydroxy(3‐2H1)nonanoic acid ((3S,4R)‐ and (3R,4S)‐ 3 ) were chemically synthesized and comparably degraded by yeast without formation of nonano‐4‐lactone. The major products of the transformation of (3S,4R)‐ and (3R,4S)‐ 3 were (3S,4R)‐ and (3R,4S)‐3‐hydroxy(3‐2H1)nonano‐4‐lactones ((3S,4R)‐ and (3R,4S)‐ 7 ), respectively. The enantiomers of the hydroxylactones 4, 5 , and 7 were chemically synthesized and their GC‐elution sequence on Lipodex® E chiral phase was determined.  相似文献   

18.
A series of 3‐(3‐hydroxyphenyl)‐4‐alkyl‐3,4‐dihydrobenzo[e][1,3]oxazepine‐1,5‐dione compounds with general formula CnH2n+1CNO(CO)2C6H4(C6H4OH) in which n are even parity numbers from 2 to 18. The structure determinations on these compounds were performed by FT‐IR spectroscopy which indicated that the terminal alkyl chain attached to the oxazepine ring was fully extended. Conformational analysis in DMSO at ambient temperature was carried out for the first time via high resolution 1H NMR and 13C NMR spectroscopy.  相似文献   

19.
The first primary 2‐aminocarba‐closo‐dodecaborates [1‐R‐2‐H2N‐closo‐CB11H10]? (R=H ( 1 ), Ph ( 2 )) have been synthesized by insertion reactions of (Me3Si)2NBCl2 into the trianions [7‐R‐7‐nido‐CB10H10]3?. The difunctionalized species [1,2‐(H2N)2closo‐CB11H10] ( 3 ) and 1‐CyHN‐2‐H3N‐closo‐CB11H10 (H‐ 4 ) have been prepared analogously from (Me3Si)2NBCl2 and 7‐H3N‐7‐nido‐CB10H12. In addition, the preparation of [Et4N][1‐H2N‐2‐Ph‐closo‐CB11H10] ([Et4N]‐ 5 ) starting from PhBCl2 and 7‐H3N‐7‐nido‐CB10H12 is described. Methylation of the [1‐Ph‐2‐H2N‐closo‐CB11H10]? ion ( 2 ) to produce 1‐Ph‐2‐Me3N‐closo‐CB11H10 ( 6 ) is reported. The crystal structures of [Et4N]‐ 2 , [Et4N]‐ 5 , and 6 were determined and the geometric parameters were compared to theoretical values derived from DFT and ab initio calculations. All new compounds were studied by NMR, IR, and Raman spectroscopy, MALDI mass spectrometry, and elemental analysis. The discussion of the experimental NMR chemical shifts and of selected vibrational band positions is supported by theoretical data. The thermal properties were investigated by differential scanning calorimetry (DSC). The pKa values of 2‐H3N‐closo‐CB11H11 (H‐ 1 ), 1‐H3N‐closo‐CB11H10 (H‐ 7 ), and 1,2‐(H3N)2closo‐CB11H10 (H2‐ 3 ) were determined by potentiometric titration and by NMR studies. The experimental results are compared to theoretical data (DFT and ab initio). The basicities of the aminocarba‐closo‐dodecaborates agree well with the spectroscopic and structural properties.  相似文献   

20.
The synthesis of a new series of 4‐aryl‐3‐chloro‐2‐oxo‐N‐[3‐(10H‐phenothiazin‐10‐yl)propyl]azetidine‐1‐carboxamides, 4a – 4m , is described. Phenothiazine on reaction with Cl(CH2)3Br at room temperature gave 10‐(3‐chloropropyl)‐10H‐phenothiazine ( 1 ), and the latter reacted with urea to yield 1‐[3‐(10H‐phenothiazin‐10‐yl)propyl]urea ( 2 ). Further reaction of 2 with several substituted aromatic aldehydes led to N‐(arylmethylidene)‐N′‐[3‐(phenothiazin‐10‐yl)propyl]ureas 3a – 3m , which, on treatment with ClCH2COCl in the presence of Et3N, furnished the desired racemic trans‐2‐oxoazetidin‐1‐carboxamide derivatives 4a – 4m . The structures of all new compounds were confirmed by IR, and 1H‐ and 13C‐NMR spectroscopy, FAB mass spectrometry, and chemical methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号