首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Functionalized oligomeric organic compounds with well‐defined β‐proline scaffold have been synthesized by a cycloadditive oligomerization approach in racemic and enantiopure forms. The structure of the novel β‐peptides was investigated by NMR spectroscopic and X‐ray methods determining the conformational shapes of the β‐proline oligomers in solution and solid states. The main structural elements subject to conformational switches are β‐peptide bonds between 5‐arylpyrrolidine‐2‐carboxylic acid units existing in Z/E configurations. The whole library of short β‐peptides and intermediate acrylamides has been tested on antiproliferative activity towards the hormone‐refractory prostate cancer cell line PC‐3 revealing several oligomeric compounds with low micromolar and submicromolar activities. Bromine‐substituted dimeric and trimeric acrylamides induced caspase‐dependent apoptosis of PC‐3 cells through cell‐cycle arrest and mitochondrial damage.  相似文献   

2.
Cancer is one of the most dangerous threats to human health. One of the issues is drug resistance action, which leads to side effects after drug treatment. Numerous therapies have endeavored to relieve the drug resistance action. Recently, anticancer peptides could be a novel and promising anticancer candidate, which can inhibit tumor cell proliferation, migration, and suppress the formation of tumor blood vessels, with fewer side effects. However, it is costly, laborious and time consuming to identify anticancer peptides by biological experiments with a high throughput. Therefore, accurately identifying anti-cancer peptides becomes a key and indispensable step for anticancer peptides therapy. Although some existing computer methods have been developed to predict anticancer peptides, the accuracy still needs to be improved. Thus, in this study, we propose a deep learning-based model, called ACPNet, to distinguish anticancer peptides from non-anticancer peptides (non-ACPs). ACPNet employs three different types of peptide sequence information, peptide physicochemical properties and auto-encoding features linking the training process. ACPNet is a hybrid deep learning network, which fuses fully connected networks and recurrent neural networks. The comparison with other existing methods on ACPs82 datasets shows that ACPNet not only achieves the improvement of 1.2% Accuracy, 2.0% F1-score, and 7.2% Recall, but also gets balanced performance on the Matthews correlation coefficient. Meanwhile, ACPNet is verified on an independent dataset, with 20 proven anticancer peptides, and only one anticancer peptide is predicted as non-ACPs. The comparison and independent validation experiment indicate that ACPNet can accurately distinguish anticancer peptides from non-ACPs.  相似文献   

3.
Ras genes are frequently activated in human cancers, but the mutant Ras proteins remain largely “undruggable” through the conventional small‐molecule approach owing to the absence of any obvious binding pockets on their surfaces. By screening a combinatorial peptide library, followed by structure–activity relationship (SAR) analysis, we discovered a family of cyclic peptides possessing both Ras‐binding and cell‐penetrating properties. These cell‐permeable cyclic peptides inhibit Ras signaling by binding to Ras‐GTP and blocking its interaction with downstream proteins and they induce apoptosis of cancer cells. Our results demonstrate the feasibility of developing cyclic peptides for the inhibition of intracellular protein–protein interactions and of direct Ras inhibitors as a novel class of anticancer agents.  相似文献   

4.
The effect of preorganized versus undefined charge display on the cellular uptake of cationic cell‐penetrating peptides (CPPs) was investigated by comparing conformationally well‐defined guanidinylated oligoprolines with flexible oligoarginines. Flow cytometry and confocal microscopy studies with different cancer cell lines (HeLa, MCF‐7, and HT‐29) showed that preorganization of cationic charges in lateral distances of ≈9 Å enhanced the cellular uptake of CPPs. Binding affinity measurements revealed tighter binding of analogues of cell‐surface glycans to the guanidinylated octaproline with localized charges compared to flexible octaarginine, a finding that was further correlated to the cellular uptake by studies with CHO cells deficient in glycans on the outer plasma membrane.  相似文献   

5.
A simple method is described for the patterned deposition of Teflon on paper to create an integrated platform for parallel organic synthesis and cell‐based assays. Solvent‐repelling barriers made of Teflon‐impregnated paper confine organic solvents to specific zones of the patterned array and allow for 96 parallel flow‐through syntheses on paper. The confinement and flow‐through mixing significantly improves the peptide yield and simplifies the automation of this synthesis. The synthesis of 100 peptides ranging from 7 to 14 amino acids in length gave over 60 % purity for the majority of the peptides (>95 % yield per coupling/deprotection cycle). The resulting peptide arrays were used in cell‐based screening to identify 14 potent bioactive peptides that support the adhesion or proliferation of breast cancer cells in a 3D environment. In the future, this technology could be used for the screening of more complex phenotypic responses, such as cell migration or differentiation.  相似文献   

6.
A number of cyclo‐β‐tripeptides and their linear precursors were subjected to primary biological evaluation for cancer‐cell growth inhibition (one‐dose, three‐cell essay), and the five most active ones were then tested in the anti‐tumor screen of the National Cancer Institute (Bethesda, USA) with 60 human cancer cell lines. Growth inhibition values GI50 in the one‐digit micromolar, and in one case in the nanomolar range were obtained. The effects show selectivities for certain types of cancer cells and for certain cell lines within these types; the screen includes leukemia, non‐small‐cell lung, colon, and central‐nervous‐system (CNS) cancer, melanoma, ovarian, renal, prostate, and breast cancer cell lines. The synthesis and full characterization of two new cyclo‐β‐peptides, (β3‐HSer(OBn))3 ( 11 ) and (β3‐HMet)3 ( 12 ) are described. Other cyclo‐ β‐peptides included in this investigation are (β‐Asp(Bn))3 ( 13 ), (β‐HGlu(Bn))3 ( 14 ), and (β‐HAla)3 ( 16 ), compounds which had been previously prepared by us. Strongest activities were measured with the cyclo‐β‐peptides bearing benzyl‐ester or benzyl‐ether groups in the side chains. The cytotoxic activity of the compounds included in this investigation is much lower (LC50>100 μM ) than their antiproliferative activity (GI50).  相似文献   

7.
Structural analogs are evaluated as peptide internal standards for protein quantification with liquid chromatography‐multiple reaction monitoring mass spectrometry (LC‐MRM); specifically, single conservative amino acid replacements (SCAR) are performed to create tagged standards that differ by the addition or subtraction of a single methylene group in one amino acid side chain. Because the performance of stable isotope‐labeled standards (SIS) has been shown to be superior to structural analogs, differences in both development and quantitative performance between assays based on SIS and SCAR peptides are explored. To establish an assay using the structural analogs, analysis of endogenous, SCAR and SIS peptides was performed to examine their ion signal, fragmentation patterns and response in LC‐MRM. Performance of SCAR and SIS peptides was compared for quantification of epidermal growth factor receptor from lung cancer cell lysates and immunoglobulin M in the serum of multiple myeloma patients. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
Progress in prostate cancer research is presently limited by a shortage of reliable in vitro model systems. The authors describe a novel self‐assembling peptide, bQ13, which forms nanofibers and gels useful for the 3D culture of prostate cancer spheroids, with improved cytocompatibility compared to related fibrillizing peptides. The mechanical properties of bQ13 gels can be controlled by adjusting peptide concentration, with storage moduli ranging between 1 and 10 kPa. bQ13's ability to remain soluble at mildly basic pH considerably improved the viability of encapsulated cells compared to other self‐assembling nanofiber‐forming peptides. LNCaP cells formed spheroids in bQ13 gels with similar morphologies and sizes to those formed in Matrigel or RADA16‐I. Moreover, prostate‐specific antigen (PSA) is produced by LNCaP cells in all matrices, and PSA production is more responsive to enzalutamide treatment in bQ13 gels than in other fibrillized peptide gels. bQ13 represents an attractive platform for further tailoring within 3D cell culture systems.  相似文献   

9.
设计合成了多个具有2个活性序列的线性和环状多肽及具有单个活性序列的短链多肽, 研究了它们的杀菌活性, 发现其杀菌活性顺序为长链肽>环状肽>短链肽, 特别是线性的Linear-KT和Linear-KS对多种革兰氏阴性菌和阳性菌均具有较高的杀菌活性. 采用MTT法考察了Linear-KT和Linear-KS对正常细胞的毒性, 其中Linear-KS表现出较低的细胞毒性, 优于阳性对照多粘菌素B. 利用计算模拟的方法计算了多肽与细菌细胞膜中磷脂酰甘油(DMPG)的相互作用. 结果表明, 多肽和DMPG的结合能也表现出长链肽>环状肽>短链肽的规律, 特别是Linear-KT和Linear-KS具有较高的结合能. 长链肽含有2个活性序列, 可提供多个荷正电的氨基酸与荷负电的磷脂结合, 结合能较大, 杀菌活性较强. 同时, 柔性的结构及Linear-KT和Linear-KS中丝氨酸和苏氨酸的β碳上的羟基可与磷脂上的羰基形成多个氢键, 进一步增大了结合能. 计算模拟的方法为抗菌肽的杀菌活性从理论上提供了一定的依据.  相似文献   

10.
A general strategy was developed for the intracellular delivery of linear peptidyl ligands through fusion to a cell‐penetrating peptide and cyclization of the fusion peptides via a disulfide bond. The resulting cyclic peptides are cell permeable and have improved proteolytic stability. Once inside the cell, the disulfide bond is reduced to produce linear biologically active peptides. This strategy was applied to generate a cell‐permeable peptide substrate for real‐time detection of intracellular caspase activities during apoptosis and an inhibitor for the CFTR‐associated ligand (CAL) PDZ domain as a potential treatment for cystic fibrosis.  相似文献   

11.
α‐Aminoxy peptides are peptidomimetic foldamers with high proteolytic and conformational stability. To gain an improved synthetic access to α‐aminoxy oligopeptides we used a straightforward combination of solution‐ and solid‐phase‐supported methods and obtained oligomers that showed a remarkable anticancer activity against a panel of cancer cell lines. We solved the first X‐ray crystal structure of an α‐aminoxy peptide with multiple turns around the helical axis. The crystal structure revealed a right‐handed 28‐helical conformation with precisely two residues per turn and a helical pitch of 5.8 Å. By 2D ROESY experiments, molecular dynamics simulations, and CD spectroscopy we were able to identify the 28‐helix as the predominant conformation in organic solvents. In aqueous solution, the α‐aminoxy peptides exist in the 28‐helical conformation at acidic pH, but exhibit remarkable changes in the secondary structure with increasing pH. The most cytotoxic α‐aminoxy peptides have an increased propensity to take up a 28‐helical conformation in the presence of a model membrane. This indicates a correlation between the 28‐helical conformation and the membranolytic activity observed in mode of action studies, thereby providing novel insights in the folding properties and the biological activity of α‐aminoxy peptides.  相似文献   

12.
Here, a CIEF‐LIF method for multiple protein kinase simultaneous analysis and inhibitors throughput screening with fast rate and low cost is presented. Comparing with CZE, CIEF‐LIF exhibited great focusing ability and high separation efficiency for substrate and phosphorylated peptides, and is applicable for multiple kinases simultaneous analysis regardless of their substrate peptides compositions and charge statuses. Thus, highly sensitive analysis for cyclic adenosine 3’, 5’‐monophosphate‐dependent protein kinase (PKA) and cyclin‐dependent kinase 1 (CDK1) was achieved in CIEF‐LIF analysis with detection sensitivity up to 1.25 mU/μL and 0.4 mU/μL, respectively, two magnitudes higher than that of CZE and comparable with that in nanomaterials or green fluorescent protein‐based kinase assay. Moreover, the inhibition effect of inhibitors on multiple kinases could be simultaneously readout in a single electrophoretic run, with half maximal inhibitory concentration of H‐89 for PKA and Ro‐3306 for CDK1 calculated as 37.0 and 35.9 nM, respectively, consistent with literatures reported. The CIEF‐LIF also exhibited strong anti‐interference ability in human breast cancer cell lysates analysis and simulators such as forskolin and 3‐isobutyl‐1‐methylxantine assessment. Therefore, CIEF‐LIF is desirable for future biological application and clinical diagnostics and drug discovery.  相似文献   

13.
We report a new late‐stage functionalization of small peptides and cyclopeptides relying on the Negishi cross‐coupling of readily prepared iodotyrosine‐ or iodophenylalanine‐containing peptides with aryl‐, heteroaryl‐, and alkylzinc pivalates or halides. In silico and in vitro determinations of membrane permeability parameters of the modified cyclopeptides showed that in most cases, the solubility was improved by the introduction of polar pyridyl units while the cell‐membrane permeability was maintained.  相似文献   

14.
Thermoreversible polymeric biomaterials are finding increased acceptance in tissue engineering applications. One drawback of the polymers is their synthetic nature, which does not allow direct interaction of mammalian cells with the polymers. This limitation may be alleviated by grafting arginine–glycine–aspartic acid (RGD) containing peptides onto the polymer backbone to facilitate interactions with cell‐surface integrins. Toward this goal, N‐isopropylacrylamide (NiPAM)‐based thermoreversible polymers containing amine‐reactive N‐acryloxysuccinimide (NASI) groups were synthesized. Conjugation of RGD‐containing peptides to polymers was demonstrated with 1H NMR spectroscopy and reverse‐phase high‐pressure liquid chromatography. The conjugation reaction was optimal at 4 °C and pH of 8.0, and increased with the increasing NASI content of polymers. With a peptide grafting ratio of 0.25 mol %, there was no significant change in the lower critical solution temperature of the polymers. Finally, the NASI‐containing polymers, cast as films, on tissue culture polystyrene, were shown to conjugate to RGD‐containing peptides and support C2C12 cell attachment. We conclude that NASI‐containing thermoreversible polymers are amenable for grafting biomimetic peptides to impart cell adhesiveness to the polymers. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3989–4000, 2003  相似文献   

15.
Recently molecular targeting therapy has been applied to cancer chemotherapy, although in some cases side-effects are not negligible. Based on our bio-detection concept, that is, protein–protein interaction can be mimicked by using peptides, a novel cell-targeting concept designated peptide-vehicle has been proposed, which has conjugates consisting of the cancer cell recognition and cell penetrating peptides with anticancer drugs. The cancer cell surface protein can be captured by a cyclotide, containing protease resistant d-cystine. A library of cell penetrating peptides has been prepared and conjugated to the cyclotide. Anticancer molecules were recovered after clinical use, which were pooled, purified, and derivatized for loading into the vehicle. The present Letter describes construction of peptide-vehicles, bioconjugates focusing on more efficiency and cancer cell selective delivery for anticancer drugs.  相似文献   

16.
Harnessing metal‐free photoinduced reversible‐deactivation radical polymerization (photo‐RDRP) in organic and aqueous phases, we report a synthetic approach to enzyme‐responsive and pro‐apoptotic peptide brush polymers. Thermolysin‐responsive peptide‐based polymeric amphiphiles assembled into spherical micellar nanoparticles that undergo a morphology transition to worm‐like micelles upon enzyme‐triggered cleavage of coronal peptide sidechains. Moreover, pro‐apoptotic polypeptide brushes show enhanced cell uptake over individual peptide chains of the same sequence, resulting in a significant increase in cytotoxicity to cancer cells. Critically, increased grafting density of pro‐apoptotic peptides on brush polymers correlates with increased uptake efficiency and concurrently, cytotoxicity. The mild synthetic conditions afforded by photo‐RDRP, make it possible to access well‐defined peptide‐based polymer bioconjugate structures with tunable bioactivity.  相似文献   

17.
In early diagnosis of lung cancer, a polarization microscopy is a powerful tool to obtain the optical information of biological tissues. In this paper, a new microfluidic polarization imaging and analysis method was proposed for the detection and classification of cancer‐associated fibroblasts and the two kinds of non‐small cell lung cancer cells, A549 and H322. A polarizing microscopy system was constructed based on a commercial microscope to obtain 3*3 Mueller matrix of cells. Based on the Muller matrix decomposition algorithm and analysis in spatial domain and frequency domain, appropriate classification parameters were selected for the characterization of different polarization characteristics of cells. Finally, the logistic regression models based on machine learning were applied to determine optimal feature parameters and classify cells. This method integrated the morphological information of the cells, and the polarization characteristics of the cells in different polarization states. It is for the first time that the polarization microscopic image analysis method has been applied to the detection and classification of non‐small cell lung cancer cells. The results show that the presented microfluidic polarization microscopic image analysis method could classify cells effectively. Compared with the Muller matrix measurement and calculation methods, the method proposed in this paper was greatly simplified in both the acquisition of polarized images and the analysis and processing of polarized images.  相似文献   

18.
A series of new 2‐methyl‐2‐[(1,3‐Diethyl‐2,6‐dioxo‐2,3,6,7‐tetrahydro‐1H‐purin‐8‐yl)thio]‐N‐ substituted arylacetamides were synthesized. The antitumor activity of these purine based compounds were evaluated on breast cancer (MCF7) and leukemic cancer (K562) cell lines via cell viability assay utilizing the tetrazolium dye 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide (MTT). These results were substantiated using computer docking experiments (LigandFit docking engine and PMF scoring function) which predict that the antitumor activity of these new compounds may be attributable to their abilities to effectively bind and block oncogenic tyrosine kinases, particularly bcr/abl.  相似文献   

19.
A method using high‐speed capillary micellar electrokinetic chromatography and a microbial fuel cell was applied to determine the metabolite of the peptides released by Bacillus licheniformis . Two peptides, l ‐carnosine and l ‐alanyl‐l ‐glutamine were used as the substrate to feed Bacillus licheniformis in a microbial fuel cell. The metabolism process of the bacterium was monitored by analyzing the voltage outputs of the microbial fuel cell. A home‐made spontaneous injection device was applied to perform high‐speed capillary micellar electrokinetic chromatography. Under the optimized conditions, tryptophan, glycine, valine, tyrosine and the two peptides could be rapidly separated within 2.5 min with micellar electrokinetic chromatography mode. Then the method was applied to analyze the solutions sampled from the microbial fuel cell. After 92 h running, valine, as the metabolite, was successfully detected with concentration 3.90 × 10−5 M. The results demonstrated that Bacillus licheniformis could convert l ‐carnosine and l ‐alanyl‐l ‐glutamine into valine. The method employed in this work was proved to have great potential in analysis of metabolites, such as amino acids, for microorganisms.  相似文献   

20.
Reported here is a novel dynamic biointerface based on reversible catechol‐boronate chemistry. Biomimetically designed peptides with a catechol‐containing sequence and a cell‐binding sequence at each end were initially obtained. The mussel‐inspired peptides were then reversibly bound to a phenylboronic acid (PBA) containing polymer‐grafted substrate through sugar‐responsive catechol‐boronate interactions. The resultant biointerface is thus capable of dynamic presentation of the bioactivity (i.e. the cell‐binding sequence) by virtue of changing sugar concentrations in the system (similar to human glycemic volatility). In addition, the sugar‐responsive biointerface enables not only dynamic modulation of stem cell adhesion behaviors but also selective isolation of tumor cells. Considering the highly biomimetic nature and biological stimuli‐responsiveness, this mussel‐inspired dynamic biointerface holds great promise in both fundamental cell biology research and advanced medical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号