首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hyperbranched polymers are important soft nanomaterials but robust synthetic methods with which the polymer structures can be easily controlled have rarely been reported. For the first time, we present a one‐pot one‐batch synthesis of polytriazole‐based hyperbranched polymers with both low polydispersity and a high degree of branching (DB) using a copper‐catalyzed azide–alkyne cycloaddition (CuAAC) polymerization. The use of a trifunctional AB2 monomer that contains one alkyne and two azide groups ensures that all Cu catalysts are bound to polytriazole polymers at low monomer conversion. Subsequent CuAAC polymerization displayed the features of a “living” chain‐growth mechanism with a linear increase in molecular weight with conversion and clean chain extension for repeated monomer additions. Furthermore, the triazole group in a linear (L) monomer unit complexed CuI, which catalyzed a faster reaction of the second azide group to quickly convert the L unit into a dendritic unit, producing hyperbranched polymers with DB=0.83.  相似文献   

2.
A series of linear‐dendritic hybrid polymers, containing pyrene units at the periphery of aliphatic polyester dendrons, were prepared for the purpose of dispersing shortened single‐walled carbon nanotubes (SWNTs) in tetrahydrofuran (THF). The prepared hybrids contained 1, 2, 4, 8, or 16 (G0 through G4) pyrene units and a linear segment composed of polystyrene. It was found that a minimum of four pyrene units was necessary to form a strong enough interaction with SWNTs to enable steric stabilization in solution, when using a linear polymer segment of 11.5 kDa. Increasing either the number of pyrene units per polymer chain or the length of the polymer segment to 18.0 kDa did not improve nanotube solubility, whereas decreasing the polymer length resulted in significantly less effective nanotube dissolution. The G4 dendron alone, without the linear polystyrene segment, was also found to impart solubility to the nanotubes in THF. Interactions between the series of linear‐dendritic hybrids and full‐length multiwalled carbon nanotubes were also investigated, and it was found that the polymers exhibited strong interactions with the multiwalled carbon nanotube surface, resulting in the formation of stable solutions. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1016–1028, 2010  相似文献   

3.
A novel molecularly imprinted polymer based on magnetic phenyl‐modified multi‐walled carbon nanotubes was synthesized using curcumin as the template molecule, methacrylic acid as the functional monomer and ethylene glycol dimethacrylate as the cross‐linker. The phenyl groups contained in the magnetic imprinted polymers acted as the assisting functional monomer. The magnetic imprinted polymers were characterized by scanning electron microscopy, Fourier‐transform infrared spectroscopy and vibrating sample magnetometry. Adsorption studies demonstrated that the magnetic imprinted polymers possessed excellent selectivity toward curcumin with a maximum capacity of 16.80 mg/g. Combining magnetic extraction and high‐performance liquid chromatography technology, the magnetic imprinted polymer based on magnetic phenyl‐modified multi‐walled carbon nanotubes was applied for the rapid separation and enrichment of curcumin from ginger powder and kiwi fruit root successfully.  相似文献   

4.
Carbon‐based nanomaterials have been widely studied in the past decade. Three approaches have been developed for the preparation of single‐handed helical carbonaceous nanotubes. The first approach uses the carbonization of organopolymeric nanotubes, where the organic polymers are polypyrrole, 3‐aminophenol‐formaldehyde resin, and m‐diaminobenzene‐formaldehyde resin. The second approach uses the carbonization of aromatic ring‐bridged polybissilsesquioxane followed by the removal of silica. Micropores exist within the walls of the carbonaceous nanotubes. The third approach uses the carbonization of organic compounds within silica nanotubes. This hard‐templating approach drives the formation of helical carbonaceous nanotubes containing twisted carbonaceous nanoribbons. All of these helical carbonaceous nanotubes exhibit optical activity, which is believed to originate from the chiral π‐π stacking of aromatic rings. They can be used as chirality inducers, and for lithium‐ion storage.  相似文献   

5.
We review recent developments in the preparation of mesoporous metals and related metal‐based nanomaterials. Among the many types of mesoporous materials, mesoporous metals hold promise for a wide range of potential applications, such as in electronic devices, magnetic recording media, and metal catalysts, owing to their metallic frameworks. Mesoporous metals with highly ordered networks and narrow pore‐size distributions have traditionally been produced by using mesoporous silica as a hard template. This method involves the formation of an original template followed by deposition of metals within the mesopores and subsequent removal of the template. Another synthetic method is the direct‐template approach from lyotropic liquid crystals (LLCs) made of nonionic surfactants at high concentrations. Direct‐template synthesis creates a novel avenue for the production of mesoporous metals as well as related metal‐based nanomaterials. Many mesoporous metals have been prepared by the chemical or electrochemical reduction of metal salts dissolved in aqueous LLC domains. As a soft template, LLCs are more versatile and therefore more advantageous than hard templates. It is possible to produce various nanostructures (e.g., lamellar, 2D hexagonal (p6mm), and 3D cubic (Ia d)), nanoparticles, and nanotubes simply by controlling the composition of the reaction bath.  相似文献   

6.
We present the synthesis of metal nanowires in a multiplexed device configuration using single‐walled carbon nanotubes (SWNTs) as nanoscale vector templates. The SWNT templates control the dimensionality of the wires, allowing precise control of their size, shape, and orientation; moreover, a solution‐processable approach enables their linear deposition between specific electrode pairs in electronic devices. Electrical characterization demonstrated the successful fabrication of metal nanowire electronic devices, while multiscale characterization of the different fabrication steps revealed details of the structure and charge transfer between the material encapsulated and the carbon nanotube. Overall the strategy presented allows facile, low‐cost, and direct synthesis of multiplexed metal nanowire devices for nanoelectronic applications.  相似文献   

7.
The pnictogen nanomaterials, including phosphorene and arsenene, display remarkable electronic and chemical properties. Yet, the structural diversity of these main group elements is still poorly explored. Here we fill single‐wall carbon nanotubes with elemental arsenic from the vapor phase. Using electron microscopy, we find chains of highly reactive As4 molecules as well as two new one‐dimensional allotropes of arsenic: a single‐stranded zig‐zag chain and a double‐stranded zig‐zag ladder. These linear structures are important intermediates between the gas‐phase clusters of arsenic and the extended sheets of arsenene. Raman spectroscopy indicates weak electronic interaction between the arsenic and the nanotubes which implies that the formation of the new allotropes is driven primarily by the geometry of the confinement. The relative stabilities of the new arsenic structures are estimated computationally. Band‐gap calculations predict that the insulating As4 chains become semiconducting, once converted to the zig‐zag ladder, and form a fully metallic allotrope of arsenic as the zig‐zag chain.  相似文献   

8.
Selective polymer wrapping is a promising approach to obtain high‐chiral‐purity single‐walled carbon nanotubes (SWCNTs) needed in technical applications and scientific studies. We showed that among three fluorene‐based polymers with different side‐chain lengths and backbones, poly[(9,9‐dihexylfluorenyl‐2,7‐diyl)‐co‐(9,10‐anthracene)] (PFH‐A) can selectively extract SWCNTs synthesized from the CoSO4/SiO2 catalyst, which results in enrichment of 78.3 % (9,8) and 12.2 % (9,7) nanotubes among all semiconducting species. These high‐chiral‐purity SWCNTs may find potential applications in electronics, optoelectronics, and photovoltaics. Furthermore, molecular dynamics simulations suggest that the extraction selectivity of PFH‐A relates to the bending and alignment of its alkyl chains and the twisting of its two aromatic backbone units (biphenyl and anthracene) relative to SWCNTs. The strong π–π interaction between polymers and SWCNTs would increase the extraction yield, but it is not beneficial for chiral selectivity. Our findings suggest that the matching between the curvature of SWCNTs and the flexibility of the polymer side chains and the aromatic backbone units is essential in designing novel polymers for selective extraction of (n,m) species.  相似文献   

9.
The use of selective interactions between conjugated polymers and single‐walled carbon nanotubes has emerged as a promising method for the separation of nanotubes by electronic type. Although much attention has been devoted to investigating polyfluorenes and their ability to disperse semiconducting carbon nanotubes under specific conditions, other polymer families, such as poly(2,7‐carbazole)s, have been relatively overlooked. Poly(2,7‐carbazole)s have been shown to also preferentially interact with semiconducting carbon nanotubes, however a detailed investigation of polymer parameters, such as molecular weight, has not been performed. We have prepared seven different molecular weights of a poly(2,7‐carbazole), from short chain oligomers to high molecular weight polymers, and have investigated their effectiveness at dispersing semiconducting single‐walled carbon nanotubes. Although all polymer chain lengths were able to efficiently exfoliate carbon nanotube bundles using a mild dispersion protocol, only polymers above a certain threshold molecular weight (Mn ~ 27 kDa) were found to exhibit complete selectivity for semiconducting nanotubes, with no observable signals from metallic species. Additionally, we found the quality of separation to be strongly dependent on the ratio of polymer to carbon nanotube. Contrary to previous reports, we have found that an excess of poly(2,7‐carbazole) leads to incomplete removal of metallic carbon nanotubes. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2510–2516  相似文献   

10.
This work reports the synthesis and characterization of diamantane‐based polyimides obtained from 4,9‐bis[4(3,4‐dicarboxyphenoxy)phenyl]diamantane dianhydride and various aromatic diamines. Interestingly, the diamantane‐based polyimides were very stable to hydrolysis. This novel polyimide exhibits a low dielectric constant (2.65–2.77), low moisture absorption (<0.67%), good solubility, high Tg and unusually high thermal stability. Dynamic mechanical analysis (DMA) reveals that the diamantane‐based polyimides have high Tg ranging from 281 to 379 °C. The high‐temperature β1 subglass transition around 285 °C was observed in polyimide 6a derived from 2,2′‐bis(trifluoromethyl)benzidine. This class of novel diamantane‐based polyimide is very promising for electronic applications, because of its good mechanical properties, good thermal stability, low dielectric constant, excellent hydrolytic resistance, and low moisture absorption. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1673–1684, 2009  相似文献   

11.
The on‐surface coupling reactions of terminal alkynes catalyzed by exogenous cupric ions on chemically inert highly oriented pyrolytic graphite (HOPG) surface have been investigated by scanning tunnelling microscopy. In the presence of exogenous cupric ions, diyne‐linked nanostructures generated via homocoupling of terminal alkynes are the exclusive products, whereas no coupling reaction occurs for the terminal alkynes on the surface in the absence of the cupric ions, suggesting that exogenous cupric ions are efficient to catalyze the highly chemoselective on‐surface reaction of terminal alkynes. The HOPG surface displays a template effect to the growth and alignment of the products on the surface. As a result, 2D arrays of diyne‐linked zigzag polymers and 2D diyne‐linked porous polymers are fabricated from ditopic monomer 3,6‐diethynylcarbazole and tritopic monomer 1,3,5‐tris‐(4‐ethynylphenyl) benzene, respectively. This synthetic strategy combining the high selectivity of cupric ion catalyst as well as the template effect of on‐surface synthesis approach could be a general strategy to fabricate diyne‐linked nanostructures and nanomaterials on solid surfaces.  相似文献   

12.
Combination of the layer-by-layer (LbL) technique with the porous template method has attracted significant interest as a versatile approach that has been used to prepare tubular nanomaterials with tailored properties. The process involves the sequential deposition of different species, such as polymers, nanoparticles, lipids, proteins, dyes and organic or inorganic small molecules into various porous templates, which are subsequently removed to yield free-standing nanotubes. At the same time, this approach permits the formation of composite nanotubes with the engineering features, including size, shape, composition and function. In this review, we summarize the synthesis and properties of various LbL-assembled composite nanotubes based on electrostatic attraction, hydrogen bonding, and covalent bonding. These assembled nanotubes possess potential application in biomedical fields such as bioseparations, biocatalysis, biosensor, and drug delivery.  相似文献   

13.
Synthesis of low‐dimensional carbon nanomaterials such as carbon nanotubes (CNTs) is a key driver for achieving advances in energy storage, computing, and multifunctional composites, among other applications. Here, we report high‐yield thermal chemical vapor deposition (CVD) synthesis of CNTs catalyzed by reagent‐grade common sodium‐containing compounds, including NaCl, NaHCO3, Na2CO3, and NaOH, found in table salt, baking soda, and detergents, respectively. Coupled with an oxidative dehydrogenation reaction to crack acetylene at reduced temperatures, Na‐based nanoparticles have been observed to catalyze CNT growth at temperatures below 400 °C. Ex situ and in situ transmission electron microscopy (TEM) reveal unique CNT morphologies and growth characteristics, including a vaporizing Na catalyst phenomenon that we leverage to create CNTs without residual catalyst particles for applications that require metal‐free CNTs. Na is shown to synthesize CNTs on numerous substrates, and as the first alkali group metal catalyst demonstrated for CNT growth, holds great promise for expanding the understanding of nanocarbon synthesis.  相似文献   

14.
Poly(N‐isopropylacrylamide) (PNIPAAm) grafted dextran nanogels with dodecyl and thiol end groups have been synthesized by RAFT process. Dodecyl‐terminated polymers (DexPNI) can be readily dissolved in water and further self assemble into ordered stable nanostructures through direct noncovalent interactions at room temperature. SEM, AFM and DLS measurements confirm the formation of spherical nanogels at hundred‐nanometer scales. The elevation of environment temperature will indirectly result in the formation of collapsed nanostructures due to the LCST phase transition of PNIPAAm side chains. Turbidimetry results show that the phase transition behaviors of DexPNI are greatly dependent on PNIPAAm chain length and polymer concentration: increasing PNIPAAm chain length and polymer concentration both lead to lower LCSTs and sharper phase transitions. Moreover, the dodecyl‐terminated polymers can transform into thiol‐terminated versions by aminolysis of trithiocarbonate groups, and further into chemical (disulfide) cross‐linked versions (SS‐DexPNI) by oxidation. SS‐DexPNI nanogels have “doubled” chain length of PNIPAAm, and hence sharper phase transitions. In situ DLS measurements of the evolution of hydrodynamic radius attest that the self assembly of SS‐DexPNI nanogels can be selectively directed by the change in either external temperature or redox potential. These nanogels thus are promising candidates for triggered intracellular delivery of encapsulated cargo. We can also expect that the polymer can be noncovalently (by dodecyl end groups) or covalently (by thiol end groups) coated on a series of nanomaterials (e.g., carbon nanotubes, graphene, gold nanomaterials) to build a variety of novel smart, and robust nanomaterials.

  相似文献   


15.
We present terminal deoxynucleotidyl transferase‐catalyzed enzymatic polymerization (TcEP) for the template‐free synthesis of high‐molecular‐weight, single‐stranded DNA (ssDNA) and demonstrate that it proceeds by a living chain‐growth polycondensation mechanism. We show that the molecular weight of the reaction products is nearly monodisperse, and can be manipulated by the feed ratio of nucleotide (monomer) to oligonucleotide (initiator), as typically observed for living polymerization reactions. Understanding the synthesis mechanism and the reaction kinetics enables the rational, template‐free synthesis of ssDNA that can be used for a range of biomedical and nanotechnology applications.  相似文献   

16.
MoO3 has a unique rigid double‐layer structure, which makes it a real challenge to prepare nanotubular structures. The controlled synthesis of MoO3 single‐walled nanotubes (SWNTs) is achieved through a cluster‐based self‐assembly route on the dodecanethiol/water interface. Various factors are studied at length, including precursor type, reaction time, temperature, pH value, and their influence on the morphology of products. The concept of “self‐assembly—from simple clusters to nanostructures” is proposed here based on preliminary results from the synthesis of MoO3 SWNTs, which provides a new aspect for traditional synthetic chemistry of nanomaterials and polyoxometalates.  相似文献   

17.
Pencil graphite electrodes (PGEs) have several advantages over other carbon‐based or commercial metal electrodes, including widespread availability, very low cost, and ease of modification. To make the best use of PGEs in electroanalysis, significant recent advances in the development of different nanomaterial‐PGEs have been observed. The literature published up to mid‐2015 is summarized in the present review, with a focus on the various methodologies used to readily modify graphite pencil electrodes using nanomaterials. This review also touches on the surface characterization of these electrodes and their potential applications in a variety of electrochemical detection applications. The review outlines the scope for further research in this area and discusses the importance of surface modifications of conventional PGE electrodes using nanomaterials or a combination of nanomaterials and electroactive polymers.  相似文献   

18.
Ultra‐high‐molecular‐weight (UHMW) polymers display outstanding properties and hold potential for wide applications. However, their precise synthesis remains challenging. Herein, we developed a novel reversible‐deactivation radical polymerization based on the strong and selective fluorine–fluorine interaction, allowing chain‐transfer agents to spontaneously differentiate into two groups that take charge of the chain growth and reversible deactivation of the growing chains, respectively. This method enables dramatically improved livingness of propagation, providing UHMW polymers with a surprisingly narrow molecular weight distribution (?≈1.1) from a variety of fluorinated (meth)acrylates and acrylamide at quantitative conversions under visible‐light irradiation. In situ chain‐end extensions from UHMW polymers facilitated the synthesis of well‐defined block copolymers, revealing the excellent chain‐end fidelity achieved by this method.  相似文献   

19.
Methodology that enables the controlled synthesis of linear and branched polymers from an identical monomer will be a novel pathway for polymer synthesis and processing. Herein we first describe the control of one or both of the C(3)‐C(3′) and C(6)‐C(6′) coupling reactions of carbazolyl. In a second approach, an identical monomer containing two carbazolyls is polymerized using chemical and electrochemical oxidizers, leading to topologically controllable growth of linear polymers in weak oxidizer or of cross‐linked polymer chains in strong oxidizer, with satisfactory long chain propagation of step growth polymerization (Mn=6.0×104 g mol?1, Mw/Mn=2.3). This very simple polymerization with cheap reagents and low levels of waste has provided a flexible pathway for synthesis and processing of polymers.  相似文献   

20.
We report an anionic surfactant approach for size and shape control in polyaniline, polypyrrole, and their polyaniline‐co‐polypyrrole random copolymer nanomaterials. A renewable resource azobenzenesulfonic acid anionic surfactant was developed for template‐assisted synthesis of these classes of nanomaterials. The surfactant exists as 4.3 nm micelle in water and self‐organizes with pyrrole to produce spherical aggregates. The sizes of the spherical aggregates were controlled by water dilution and subsequent oxidation of these templates, produced polypyrrole nanospheres of 0.5 μM to 50 nm dimensions. The anionic surfactant interacts differently with aniline and forms cylindrical aggregates, which exclusively produce nanofibers of ∼180 nm in diameter with length up to 3–5 μM. The template selectivity of surfactant toward aniline and pyrrole was used to tune the nanostructure of the aniline‐pyrrole random copolymers from nanofiber‐to‐nanorod‐to‐nanospheres. Dynamic light scattering technique and electron microscopes were used to study the mechanistic aspects of the template‐assisted polymerization. The four probe conductivity of the copolymers showed a nonlinear trend and the conductivity passes through minimum at 60–80% of pyrrole in the feed. The amphiphilic dopant effectively penetrates into the crystal lattices of the polymer chain and induces high solid state ordering in the homopolymer nanomaterials. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 830–846, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号