首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
N. Nouiri  K. Jaouadi  T. Mhiri  N. Zouari 《Ionics》2016,22(9):1611-1623
Synthesis and structural characterization by single-crystal X-ray diffraction method, thermal behavior, and electrical proprieties are given for a new compound with a superprotonic phase transition Cs2(HSO4)(H2AsO4). The title compound crystallizes in the monoclinic system with the P21/n space group. The structure contains zigzag chains of hydrogen-bonded anion tetrahedra that extend in the [010] direction. Each tetrahedron is additionally linked to a tetrahedron neighboring chain to give a planar structure with hydrogen-bonded sheets lying parallel to (10ī). The existence of O–H and (S/As)–O bonds in the structure at room temperature has been confirmed by IR and Raman spectroscopy in the frequency ranges 4000–400 cm?1and 1200–50 cm?1, respectively. Differential scanning calorimetry analysis of the superprotonic transition in Cs2(HSO4)(H2AsO4) showed that the transformation to high temperature phase occurs at 417 K by one-step process. Thermal decomposition of the product takes place at much higher temperatures, with an onset of approximately 534 K. The superprotonic transition was also studied by impedance and modulus spectroscopy techniques. The conductivity in the high temperature phase at 423 K is 1.58 × 10?4 Ω?1 cm?1, and the activation energy for the proton transport is 0.28 eV. The conductivity relaxation parameters associated with the high disorder protonic conduction have been examined from analysis of the M”/M”max spectrum measured in a wide temperature range. Transport properties of this material appear to be due to the proton hopping mechanism.  相似文献   

2.
This paper reports on the results of measurements of the internal friction Q?1 and the shear modulus G of Li2B4O7 single crystals along the crystallographic directions [100] and [001] in the temperature range 300–550 K for strain amplitudes of (2–10)×10?5 at infralow frequencies. The anomalies observed in Q?1 and G in the temperature range 390–410 K are due to thermal activation of the mobility of lithium cations and their migration from one energetically equivalent position to another. A jump in the internal friction background is revealed in the vicinity of the Q?1 and G anomalies for the Li2B4O7 crystal. The magnitude of this jump depends on the crystallographic direction.  相似文献   

3.
We report a polycrystalline NaFeTiO4 prepared via conventional solid-state reaction route. X-ray diffraction (XRD) results and Rietveld refinement confirmed single-phase NaFeTiO4 having an orthorhombic unit cell with lattice parameters a = 9.17051 Å, b = 2.96310 Å, and c = 10.73676 Å and Pnma space group (No. 62). Energy dispersive spectrum (EDS) yielded sample stoichiometry that agrees well with its molecular formula. The surface morphology indicated a cylindrical rod-like microstructure comprising well-defined grains having variable dimension, i.e., diameter ~?250 to 350 nm and length ~?1 to 5 μm. Vibrational spectroscopy (FTIR/Raman) results indicated presence of FeO6 and TiO6 octahedra in good agreement with crystallographic study. Brunner-Emmet-Teller (BET) surface area measurement yielded a specific surface area as high as ~?4.28 m2 g?1. Electrical impedance spectrum indicated presence of grains separated by well-defined grain boundaries in agreement with microstructural analysis. Electrical conductivity of the material was estimated to be ~?6.05 × 10?6 S cm?1. The structural model obtained using XRD and vibrational spectrum results suggest layered tunnel/cage structure of cage dimension ~?4.65 Å, along [010] direction in the xz plane, which is larger than the size of Na+ ion (0.98 Å). So, easier Na+ migration feasibility exists in NaFeTiO4 crystal lattice making it a good candidate for electrode applications.  相似文献   

4.
The present paper reports the synthesis, crystal structure, 13C and 111Cd cross-polarization magic-angle spinning nuclear magnetic resonance(CP-MAS-NMR) analysis and ac conductivity for a new organic–inorganic hybrid salt, [C7H12N2][CdCl4]. The compound crystallizes in the triclinic system, space group P\( \overline 1 \), with unit cell dimensions: a?=?7.1050(3) Å, b?=?8.9579(3) Å, c?=?9.4482(3) Å, α?=?81.415(1)°, β?=?89.710(2)°, γ?=?85.765(1)°, V?=?592.97(4) Å3, and Z?=?2. The asymmetric unit is composed of one-2,4-diammonium toluene cation and one [CdCl4]2? anion. The Cd atom is in a slightly distorted octahedra coordination environment. Its structure can be described by infinite chains of CdCl6 octahedron linked to organic cations by a strong charge-assisted N–H???Cl interactions in order to build organic–inorganic layers staked along \( \left[ {0\overline 1 1} \right] \) direction. The solid state 13C CP-MAS-NMR spectra has shown seven isotropic resonances, confirming the existence of seven non-equivalent carbon atoms, which is consistent with crystal structure determined by X-ray diffraction. As for 111Cd MAS-NMR, it has shown one cadmium site with isotropic chemical shift observed at 167.2 ppm. The complex impedance of the compound has been investigated in the temperature range of 403–460 K and in the frequency range of 200 Hz–5 MHz. The impedance plots have shown semicircle arcs at different temperatures and an electrical equivalent circuit has been proposed to explain the impedance results. The circuits consist of the parallel combination of bulk resistance R p and constant phase elements.  相似文献   

5.
Ni sintering at high temperature (~ 800 °C) operation drastically degrades the performance of Ni-yttria-stabilized zirconia (YSZ) anode in solid oxide fuel cell (SOFC). Mixed ionic and electronic conductive oxides such as CeO2 and Nb2O5 enhance the dispersion of Ni, CeO2 enhances the redox behavior and promotes charge transfer reactions, and Nb2O5 increases the triple phase boundary. In the present work, anode-supported SOFC is fabricated and tested in H2 fuel at 800 °C. YSZ and lanthanum strontium manganite (LSM)-YSZ are used as the electrolyte and composite cathode with NiO-YSZ, CeO2-NiO-YSZ, and Nb2O5-NiO-YSZ as an anode. The peak power density obtained for the cell with 10% CeO2–30% NiO-YSZ anode at the 5 and 25 h of operation is 330 and 290 mW cm?2 which is higher than that for 40% NiO-YSZ anode (275 mW cm?2 at 5 h). The peak power density obtained for the cell with 10% Nb2O5–30% NiO-YSZ anode at the 5 and 25 h of operation is 301 and 285 mW cm?2 which is higher than that for 40% NiO-YSZ anode (275 mW cm?2 at 5 h). Physical characterization has been carried to study morphology, elemental analysis, particle size, and phase formation of the fabricated anode before and after cell operation to correlate the cell performance.  相似文献   

6.
Guoqiang Liu  Lei Wen  Yue Li  Yulong Kou 《Ionics》2015,21(4):1011-1016
The pure phase P2-Na2/3Ni1/3Mn2/3O2 was synthesized by a solid reaction process. The optimum calcination temperature was 850 °C. The as-prepared product delivered a capacity of 158 mAh g?1 in the voltage range of 2–4.5 V, and there was a phase transition from P2 to O2 at about 4.2 V in the charge process. The P2 phase exhibited excellent intercalation behavior of Na ions. The reversible capacity is about 88.5 mAh g?1 at 0.1 C in the voltage range of 2–4 V at room temperature. At an elevated temperature of 55 °C, it could remain as an excellent capacity retention at low current rates. The P2-Na2/3Ni1/3Mn2/3O2 is a potential cathode material for sodium-ion batteries.  相似文献   

7.
The Li[Li0.2Mn0.54Ni0.13Co0.13]O2 coated with CeO2 has been fabricated by an ionic interfusion method. Both the bare and the CeO2-coated samples have a typical layered structure with R-3m and C2/m space group. The results of XRD and TEM images display that the CeO2 coating layer on the precursor could enhance the growth of electrochemically active surface planes ((010), (110), and (100) planes) in the following ionic interfusion process. The results of galvanostatic cycling tests demonstrate that the CeO2-coated sample has a discharge capacity of 261.81 mAh g?1 with an increased initial Coulombic efficiency from 62.4 to 69.1% at 0.05 °C compared with that of bare sample and delivers an improved capacity retention from 71.7 to 83.4% after 100 cycles at 1 °C (1 °C?=?250 mA g?1). The results of electrochemical performances confirm that the surface modification sample exhibits less capacity fading, lower voltage decay, and less polarization.  相似文献   

8.
A novel approach of double hydroxide-mediated synthesis of nickel cobaltite (NiCo2O4) electro-active material by the hydrothermal method is reported. The obtained NiCo2O4 electro-active material displays the spinel cubic phase and hexagonal-like morphology. Thermogravimetry analysis confirms the thermal stability of the electrode material. The functional groups and phase formation of NiCo2O4 have been confirmed by FT-IR and Raman spectral analysis. The modified NiCo2O4 electrode exhibits the highest specific capacitance of 767.5 F g?1 at a current density of 0.5 A g?1 in 3 M KOH electrolyte and excellent cyclic stability (94 % capacitance retention after 1000 cycles at a high current density of 5 A g?1). The excellent electrochemical performance of the electrode is attributed to the hexagonal-like morphology, which contributes to the rich surface electro-active sites and easy transport pathway for the ions during the electrochemical reaction. The attractive Faradic behavior of NiCo2O4 electrode has been ascribed to the redox contribution of Ni2+/Ni3+ and Co2+/Co3+ metal species in the alkaline medium. The symmetrical two-electrode cell has been fabricated using the NiCo2O4 electro-active material with excellent electrochemical properties for supercapacitor applications.  相似文献   

9.
Thin films of Sb2Te3 and (Sb2Te3)70(Bi2Te3)30 alloy and have been deposited on precleaned glass substrate by thermal evaporation technique in a vacuum of 2?×?10?6 Torr. The structural study was carried out by X-ray diffractometer, which shows that the films are polycrystalline in nature. The grain size, microstrain and dislocation density were determined. The Seebeck coefficient was determined as the ratio of the potential difference across the films to the temperature difference. The power factor for the (Sb2Te3)70 (Bi2Te3)30 and (Sb2Te3) is found to be 19.602 and 1.066 of the film of thickness 1,500 Å, respectively. The Van der-Pauw technique was used to measure the Hall coefficient at room temperature. The carrier concentration was calculated and the results were discussed.  相似文献   

10.
In order to establish the mechanism and to determine the parameters of lithium transport in electrodes based on lithium-vanadium phosphate (Li3V2(PO4)3), the kinetic model was designed and experimentally tested for joint analysis of electrochemical impedance (EIS), cyclic voltammetry (CV), pulse chronoamperometry (PITT), and chronopotentiometry (GITT) data. It comprises the stages of sequential lithium-ion transfer in the surface layer and the bulk of electrode material’s particles, including accumulation of lithium in the bulk. Transfer processes at both sites are of diffusion nature and differ significantly, both by temporal (characteristic time, τ) and kinetic (diffusion coefficient, D) constants. PITT data analysis provided the following D values for the predominantly lithiated and delithiated forms of the intercalation material: 10?9 and 3 × 10?10 cm2 s?1, respectively, for transfer in the bulk and 10?12 cm2 s?1 for transfer in the thin surface layer of material’s particles. D values extracted from GITT data are in consistency with those obtained from PITT: 3.5–5.8 × 10?10 and 0.9–5 × 10?10 cm2 s?1 (for the current and currentless mode, respectively). The D values obtained from EIS data were 5.5 × 10?10 cm2 s?1 for lithiated (at a potential of 3.5 V) and 2.3 × 10?9 cm2 s?1 for delithiated (at a potential 4.1 V) forms. CV evaluation gave close results: 3 × 10?11 cm2 s?1 for anodic and 3.4 × 10?11 cm2 s?1 for cathodic processes, respectively. The use of complex experimental measurement procedure for combined application of the EIS, PITT, and GITT methods allowed to obtain thermodynamic E,c dependence of Li3V2(PO4)3 electrode, which is not affected by polarization and heterogeneity of lithium concentration in the intercalate.  相似文献   

11.
The structure and dielectric characteristics of the (1000 nm)SrTiO3 spacer in a (001)SrRuO3 ‖ (001)SrTiO3 ‖ (001)La0.67Ca0.33MnO3 trilayer heterostructure grown on a (001)(LaAlO3)0.3+(Sr2AlTaO6)0.7 substrate have been studied. Both oxide electrodes, as well as the strontium titanate layer, were cube-on-cube epitaxially grown. The unit cell parameter in the SrTiO3 layer measured in the substrate plane (3.908±0.003 Å) practically coincided with that determined along the normal to the substrate surface (3.909±0.003 Å). The temperature dependence of the real part of the permittivity ?′ of the SrTiO3 layer in the range 70–180 K fits the relation (?′)?1 ~ ? 0 ?1 C 0 ?1 (T-T C ) well, where C0 and TC are the Curie constant and the Curie-Weiss temperature, respectively, for bulk strontium titanate crystals and ?0 is the free-space permittivity. The data obtained on the temperature dependence of the permittivity of SrTiO3 films enabled us to evaluate the effective depth of electric field penetration into the manganite electrode (L e ≈ 0.5 nm) and the corresponding capacitance (C e ≈1×10?6 F/cm2) of the interface separating the (001)SrTiO3 layer from the (001)La0.67Ca0.33MnO3 bottom electrode.  相似文献   

12.
Nanocrystalline Li2TiO3 was successfully synthesized using solid-state reaction method. The microstructural and electrochemical properties of the prepared material are systematically characterized. The X-ray diffraction pattern of the prepared material exhibits predominant (002) orientation related to the monoclinic structure with C2/c space group. HRTEM images and SAED analysis reveal the well-developed nanostructured particles with average size of ~40 nm. The electrochemical properties of the prepared sample are carried out using cyclic voltammetry (CV) and chronopotentiometry (CP) using Pt//Li2TiO3 cell in 1 mol L?1 Li2SO4 aqueous electrolyte. The Li2TiO3 electrode exhibits a specific discharge capacity of 122 mAh g?1; it can be used as anode in Li battery within the potential window 0.0–1.0 V, while investigated as a supercapacitor electrode, it delivers a specific capacitance of 317 F g?1 at a current density of 1 mA g?1 within the potential range ?0.4 to +0.4 V. The demonstration of both anodic and supercapacitor behavior concludes that the nanocrystalline Li2TiO3 is a suitable electrode material for supercapattery application.  相似文献   

13.
Antimony trioxide (Sb2O3) nanoparticles with particle size range from 2 to 12 nm were successfully synthesized by chemical reducing method. Antimony trichloride was reduced by hydrazine with the presence of sodium hydroxide (NaOH) as catalyst in ethylene glycol at 120 °C for 1 h. Effects of hydrazine concentration ([N2H5OH]/[Sb3+] = 0.75, 5, 10, 20, and 30, when concentration of NaOH was fixed [NaOH]/[Sb3+] = 3) and NaOH concentration ([NaOH]/[Sb3+] = 0, 1, 3, and 5, when concentration of hydrazine was fixed [N2H5OH]/[Sb3+] = 10) on the particle size and shape of the Sb2O3 nanoparticles were investigated. Transmission electron microscope, selected area electron diffraction pattern, and high resolution electron microscope were employed to study the morphology and crystallinity of the nanoparticles. It was observed that the particle size decreased and remained constant when [N2H5OH]/[Sb3+]) ≥ 10 and [NaOH]/[Sb3+] = 3. Further study on the crystallinity and phase of the nanoparticles was assisted by X-ray diffractometer (XRD). XRD revealed a cubic phase of Sb2O3 (ICDD file no. 00-043-1071) with preferred plane of (622) and lattice spacing of 1.68 Å. Correlation between UV–visible absorption wavelengths of the nanoparticles and their sizes was established.  相似文献   

14.
Advanced Li-air battery architecture demands a high Li+ conductive solid electrolyte membrane that is electrochemically stable against metallic lithium and aqueous electrolyte. In this work, an investigation has been carried out on the microstructure, Li+ conduction behaviour and structural stability of Li7La3-x Y x Zr2O12 (x = 0.125, 0.25 and 0.50) prepared by conventional solid-state reaction technique. The phase analysis of Li7La3-x Y x Zr2O12 (x = 0.125, 0.25 and 0.50) sintered at 1200 °C by powder X-ray diffraction (PXRD) and Raman confirms the formation of high Li+ conductive cubic phase (\( Ia\overline{3}d \)) lithium garnets. Among the investigated lithium garnets, Li7La2.75Y0.25Zr2O12 sintered at 1200 °C exhibits a maximized room temperature total (bulk + grain boundary) Li+ conductivity of 3.21 × 10?4 S cm?1 along with improved relative density of 96 %. The preliminary investigation on the structural stability of Li7La2.75Y0.25Zr2O12 in the solutions of 1 M LiCl, dist. H2O and 1 M LiOH at 30 °C/50 °C indicates that the Li7La2.75Y0.25Zr2O12 is relatively stable against 1 M LiCl and dist. H2O. Further electrochemical investigation is essential for practical application of Li7La2.75Y0.25Zr2O12 as protective solid electrolyte membrane in aqueous Li-air battery.  相似文献   

15.
The sample of Mg0. 5+y (Zr1-y Fey) 2 (PO4) 3 (0.0 ≤y ≤0.5) was synthesized using the sol-gel method. The structures of the samples were investigated using X-ray diffraction and Fourier transform infrared spectroscopy measurement. XRD studies showed that samples had a monoclinic structure which was iso-structured with the parent compound, Mg0.5Zr (PO4) 3. The complex impedance spectroscopy was carried out in the frequency range 1–6 MHz and temperature range 303 to 773 K to study the electrical properties of the electrolytes. The substitutions of Fe3+ with Zr4+ in the Mg0.5Zr (PO4) 3 structure was introduced as an extrainterstitial Mg2+ ion in the modified structured. The compound of Mg0.5+y (Zr1-y Fey)2(PO4)3 with y?=?0.4 gives a maximum conductivity value of 1.25?×?10?5 S cm?1 at room temperature and 7.18?×?10?5 S cm?1 at 773 K. Charge carrier concentration, mobile ion concentration, and ion hopping rate are calculated by fitting the conductance spectra to power law variation, σ ac (ω)?=?σ o ? +?Aω α . The charge carrier concentration and mobile ion concentration increases with increase of Fe3+ inclusion. This implies the increase in conductivity of the compounds was due to extra interstitial Mg2+ ions.  相似文献   

16.
The Young’s moduli along the [100] and [110] crystallographic directions and the shear modulus along the [100] direction in a high-purity yttrium garnet ferrite single crystal are measured in the temperature range from 20 to 600°C. All the independent elastic constants are calculated for this temperature range. The behavior of the elastic moduli and elastic anisotropy factor is analyzed in the vicinity of the critical temperature of the magnetic phase transition.  相似文献   

17.
Inferior rate capability is a big challenge for LiTi2(PO4)3 anode for aqueous lithium-ion batteries. Herein, to address such issue, we synthesized a high-performance LiTi2(PO4)3/carbon/carbon nanotube (LTP/C/CNT) composite by virtue of high-quality carbon coating and incorporation of good conductive network. The as-prepared LTP/C/CNT composite exhibits excellent rate performance with discharge capacity of 80.1 and 59.1 mAh g?1 at 10 C and 20 C (based on the mass of anode, 1 C = 150 mA g?1), much larger than that of the LTP/C composite (53.4 mAh g?1 at 10 C, and 31.7 mAh g?1 at 20 C). LTP/C/CNT also demonstrates outstanding cycling stability with capacity retention of 83.3 % after 1000 cycles at 5 C, superior to LTP/C without incorporation of CNTs (60.1 %). As verified, the excellent electrochemical performance of the LTP/C/CNT composite is attributed to the enhanced electrical conductivity, rapid charge transfer, and Li-ion diffusion because of the incorporation of CNTs.  相似文献   

18.
LiNi0.5Co0.2Mn0.3O2 particles of uniform size were prepared through carbonate co-precipitation method with acacia gum. The precursor of carbonate mixture was calcined at 800 °C, and a well-crystallized Ni-rich layered oxide was got. The phase structure and morphology were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The micro-sized particles delivered high initial discharge capacity of 164.3 mA h g?1 at 0.5 C (1 C?=?200 mA g?1) between 2.5 and 4.3 V with capacity retention of 87.5 % after 100 cycles. High reversible discharge capacities of 172.4 and 131.4 mA h g?1 were obtained at current density of 0.1 and 5 C, respectively. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were performed to further study the LiNi0.5Co0.2Mn0.3O2 particles. Anyway, the excellent electrochemical performances of LiNi0.5Co0.2Mn0.3O2 sample should be attributed to the use of acacia gum.  相似文献   

19.
Lithium vanadium-borate glasses with the composition of 0.3Li2O–(0.7-x)B2O3xV2O5 (x?=?0.3, 0.325, 0.35, 0.375, 0.4, 0.425, 0.45, and 0.475) were prepared by melt-quenching method. According to differential scanning calorimetry data, vanadium oxide acts as both glass former and glass modifier, since the thermal stability of glasses decreases with an increase in V2O5 concentration. Fourier transform infrared spectroscopy data show that the vibrations of [VO4] structural units occur at V2O5 concentration of 45 mol%. It is established that the concentration of V4+ ions increases exponentially with the growth of vanadium oxide concentration. Direct and alternative current measurements are carried out to estimate the contribution both electronic and ionic conductivities to the value of total conductivity. It is shown that the electronic conductivity is predominant in the total one. The glass having the composition of 0.3Li2O-0.275B2O3-0.475V2O5 shows the highest electrical conductivity that has the value of 7.4?×?10?5 S cm?1 at room temperature.  相似文献   

20.
Based on the dielectric continuum phonon model, uniaxialmodel and force balance equation the mobility of two dimensional electrongas in wurtzite AlxGa1-xN/GaN/AlxGa1-xN quantum wells isdiscussed theoretically within the temperature range dominated by opticalphonons. The dependences of the electron mobility on temperature, Al molarfraction and electron sheet density are presented including hydrostaticpressure effect. The built-in electric field is also taken into account. Itis found that under normal pressure the main contribution to the mobility isfrom the scattering of interface optical phonons in narrow (for well widthd < 12 Å) and wide (for d > 117 Å and d > 65 Å for finitelythick barriers and infinitely thick ones, respectively) wells, whereas thatis from the scattering of confined optical phonons in a well with anintermediate width. It is shown that the electron mobility decreases withincreasing Al molar fraction and temperature, whereas increases obviouslywith increasing electron sheet density. The theoretical calculated electronmobility is 978 cm2/V?s which is higher than an available experimentaldata 875 cm2/V?s when x equals to 0.58 at room temperature. Theresults under hydrostatic pressure considering the modification of strainindicate that the mobility increases slightly as hydrostatic pressureincreases from 0 to 10 GPa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号