首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inorganic salts usually influence water structure affecting the hydration of the molecules which lead to a salting-in or a salting-out effect of hydrophobic compounds. Specific conductivity and isothermal titration calorimetry have been used to study the effect of inorganic salts on aggregation of the cationic surfactant 1-decyl-3-methylimidazolium chloride in aqueous solutions. The effect of the concentration, the nature of the anion and temperature on micelle formation were studied. A decreasing critical micelle concentration (CMC) due to the weakening electrostatic repulsion between the headgroups was observed. The salts used in this investigation decreased the CMC and degree of micelle ionization in the order of Cl(-)相似文献   

2.
This article describes the preparation and the physico-chemical characterization of a new host-guest system consisting of zeolite beta nanoparticles as host and mitoxantrone as guest. The resulting host-guest system mitoxantrone@beta is characterized in terms of morphology (transmission electron microscopy, dynamic light scattering), structure (powder wide-angle X-ray diffraction, nitrogen sorption), surface charge (ξ-potential measurements), and optical properties (UV-visible absorption, steady-state fluorescence). Mitoxantrone@beta particles are monodisperse in size with a mean diameter centered around 100 nm. Mitoxantrone guest molecules are adsorbed at the micropore entrances of zeolite host. Resulting nanoparticles retrieve the interesting optical properties of guest molecules with a fluorescence emission band in the near-infrared region. Mitoxantrone loading is comparatively evaluated by three different means (elemental analysis, direct and indirect UV-visible absorption studies) showing a loading level of 6.8 μmol/g. Mitoxantrone@beta nanoparticles also show a noticeable cytotoxic effect when applied to cancer cells.  相似文献   

3.
Based on light scattering intensity measurements, a critical concentration for micelle formation can be assigned to sodium taurodeoxycholate in aqueous electrolyte solutions. For sodium taurocholate a progressive aggregation even at very low concentrations of bile salt is indicated. Surface tension and diffusion coefficients are also reported.  相似文献   

4.
5.
Measurements of pH in single-phase cytochrome c suspensions are reported. The pH, as determined by a glass electrode, has a fixed value. With the addition of salt, the supposedly fixed pH changes strongly. The pH depends on salt type and concentration and follows a Hofmeister series. A theoretical interpretation is given that provides insights into such Hofmeister effects. These occur generally in protein solutions. While classical electrostatic models provide partial understanding of such trends in protein solutions, they fail to explain the observed ion specificity. Such models neglect electrodynamic fluctuation (dispersion) forces acting between ions and proteins. We use a Poisson-Boltzmann cell model that takes these ionic dispersion potentials between ions and proteins into account. The observed ion specificity can then be accounted for. Proteins act as buffers that display similar salt-dependent pH trends not previously explained.  相似文献   

6.
7.
The enthalpy of interaction between cellobiose and sodium carboxymethyl cellulose, methyl cellulose, and 2-hydroxyethyl cellulose in water is determined. The exothermal nature of the interaction between cellulose and cellulose ethers is established. The strongest intermolecular interaction is found between cellobiose and 2-hydroxyethyl cellulose. The results are discussed in the context of the polysaccharide molecular structure.  相似文献   

8.
9.
10.
Effect of high concentrations of electrolytes (Na2SO4, NaCl, and NaNO3) on the rate of ozone decomposition in water was studied. The conversion kinetics of O3 dissolved in these solutions was analyzed. The rate constants of ozone decomposition were determined.  相似文献   

11.
12.
13.
1.  In --radiolysis of aqueous solutions of nitrotetrazolium salts, the yield of formazane in a neutral medium is higher than that for 2,3,5-triphenyltetrazolium chloride. The yields of formazanes increase in alkaline medium and in the presence of OH radical acceptors.
2.  A correlation between the values of the rate constants of the reactions of the CO2 radicals with tetrazolium salts and the half-wave potentials of the reduction of these salts was established.
Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 8, pp. 1746–1750, August, 1988.  相似文献   

14.
15.
16.
The effect exerted by the concentration of salts (NaCl, Na2SO4, and NaNO3) on the ozone solubility in aqueous solution at 20, 30, and 40°C was studied. The solubility coefficients of ozone were calculated. The Henry constants and the Sechenov coefficients were determined.  相似文献   

17.
18.
The influence of salts (TbCl3, Tb(NO3)3, PrCl3, EuCl3, CeCl3, and DyCl3) on the spectrum and intensity of multi-bubble sonoluminescence (SL) of water was observed at a frequency of 20 kHz. Luminescence bands of the lanthanide ions were detected in the SL spectra of concentrated solutions of the CeIII, TbIII, and DyIII chlorides (0.1—1 mol L–1). No luminescence was observed for solutions of the other salts, and the shape of the spectra is due to the absorption of the water SL by the lanthanide ions. Possible mechanisms of the appearance of SL of lanthanides were considered. The first mechanism is the excitation of the lanthanide aqua ions in the solution bulk due to the absorption of the short-wave portion of glow of the excited water molecules and OH radicals emitted from the cavitation gas-vapor bubbles. The second mechanism involves the transfer of the lanthanide ions to the gas phase from the liquid layer adjacent to the cavitation bubble and their excitation in the bubble volume upon collisions with other hot or electron-excited particles.  相似文献   

19.
It is suggested that electromagnetic quantum vacuum fluctuations are at the very deep root of the so-called “specific ions effects” in concentrated solutions or in living cells. A many-body quantum-mechanical frame of thinking is proposed based on the concept of quantum coherence taking into account explicitly density and excitation frequencies of molecules and/or ionic species. It is also proposed that Hofmeister phenomena could have a natural explanation in the harmonic relationships between sets of characteristic frequencies ruled by quantum mechanical laws. It then follows that physical chemistry of concentrated media and biology should be ruled more by a quantum “symphony” between indistinguishable constituents rather than localized two-body electrical interactions between molecular or ionic species.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号