首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
Metal oxide-modified ZnO /SiO2 catalysts were studied for the cyclo-dehydrogenation of ethylenediamine with propyleneglycol to 2-methylpyrazine at 633 K. The ZnO/SiO2 catalyst showed fairly good ethylenediamine conversion and quantitative propyleneglycol conversion with about 60 mol% of 2-methylpyrazine selectivity, which is due to the existence of large amount of unconverted intermediate, 2-methylpiperazine. Metal oxide (CuO, NiO, Co3O4)-modified ZnO/SiO2 catalysts were prepared to facilitate the dehydrogenation of 2-methylpiperazine to 2-methylpyrazine. About 82 mol% of 2-methylpyrazine selectivity was achieved on CuO and Co3O4 modified ZnO/SiO2 catalysts, with significant increases of pyrazine selectivity. The catalytic properties of the metal oxidemodified ZnO/SiO2 catalysts, pretreated with hydrogen gas as in the cyclo-dehydrogenation, were compared using the well-known probe reaction, the dehydrogenation/ dehydration of cyclohexanol to cyclohexanone or phenol/cyclohexene. The selectivities of pyrazine in the cyclo-dehydrogenation on the metal oxide-modified ZnO/SiO2 catalysts were correlated with the phenol selectivities of the probe reaction. It is proposed that the metallic site of catalyst is responsible for the formation of pyrazine from ethylenediamine dimerization. The improved 2-methylpyrazine yield on CuO/ZnO/SiO2 catalyst was explained by the proper adjustment of catalytic properties, which could be differentiated by the phenol selectivity in the cyclohexanol probe reaction. Thus, the large enhancement of 2-methylpiperazine dehydrogenation to 2-methylpyrazine and the suppression of excess pyrazine formation are supposed to occur on the metallic Cu formed in situ during the reaction during the cyclo-dehydrogenation of ethylenediamine with propyleneglycol.  相似文献   

2.
以二氧化硅为模板,钛酸四丁酯(TBOT)为钛源,硝酸锌为锌源,采用溶胶凝胶法制备了锌离子掺杂的介孔二氧化钛空心微球。采用X射线衍射(XRD)、比表面积(BET)、透射电镜(TEM)、扫描电镜(SEM)和X射线光电子能谱(XPS)等技术对样品进行表征,以亚甲基蓝(MB)的光催化降解为目标反应评价其光催化活性。结果表明,去核之后的复合微球为空心微球,壁厚为20nm左右。钛酸四丁酯溶液的滴加时间对微球的形貌影响较大,当滴加时间大于15min时,可以得到结构清晰的空心微球。用氢氧化钠溶液去除二氧化硅核,反应90min,二氧化硅可以被完全去除。X射线衍射表明,实验得到的掺杂锌离子的空心微球和没有掺杂锌离子的空心微球都是锐钛矿。当锌离子的摩尔分数为0.3%时,二氧化钛空心微球的晶粒尺寸最小,比表面积最大,催化亚甲基蓝降解的效率最高。  相似文献   

3.
以二氧化硅为模板,钛酸四丁酯(TBOT)为钛源,硝酸锌为锌源,采用溶胶凝胶法制备了锌离子掺杂的介孔二氧化钛空心微球。采用X射线衍射(XRD)、比表面积(BET)、透射电镜(TEM)、扫描电镜(SEM)和X射线光电子能谱(XPS)等技术对样品进行表征,以亚甲基蓝(MB)的光催化降解为目标反应评价其光催化活性。结果表明,去核之后的复合微球为空心微球,壁厚为20 nm左右。钛酸四丁酯溶液的滴加时间对微球的形貌影响较大,当滴加时间大于15 min时,可以得到结构清晰的空心微球。用氢氧化钠溶液去除二氧化硅核,反应90 min,二氧化硅可以被完全去除。X射线衍射表明,实验得到的掺杂锌离子的空心微球和没有掺杂锌离子的空心微球都是锐钛矿。当锌离子的摩尔分数为0.3%时,二氧化钛空心微球的晶粒尺寸最小,比表面积最大,催化亚甲基蓝降解的效率最高。  相似文献   

4.
Porous copper oxide (CuO) hollow microspheres have been fabricated through a simple hydrothermal method using PS latex as templates. The as-obtained samples were characterized by means of scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffractometry (XRD) and Fourier transform infrared spectroscopy (FTIR). The influences of the mole ratio of Ethylenediamine (C2H8N2) and copper acetate (Cu(Ac)2·H2O), hydrothermal temperature and time on the size and morphologies of the final products have been investigated. The possible formation mechanism of porous CuO hollow microspheres has been proposed and the specific surface area of the hollow microspheres with 81.71 m2/g is measured by BET method. The band gap value calculated from a UV–vis absorption spectrum of porous CuO hollow microspheres is 2.71 eV. The as-synthesized product exhibits high photocatalytic activity during the photodegradation of an organic dyestuff, rhodamine B (RhB), under UV-light illumination.  相似文献   

5.
Core-shell structured SiO2/poly(N-isopropylacrylamide) (SiO2/PNIPAM) microspheres were successfully fabricated through hydrolysis and condensation reaction of tertraethyl or-thosilicate (TEOS) on the surface of PNIPAM template at 50 oC. The PNIPAM template can be easily removed by water at room temperature so that SiO2 hollow microspheres were finally obtained. The transmission electron microscope and scanning electron microscope observations indicated that SiO2 hollow microspheres with an average diameter of 150 nm can be formed only if there are enough concentration of PNIPAM and TEOS, and the hy-drolysis time of TEOS. FTIR analysis showed that part of PNIPAM remained on the wall of SiO2 because of the strong interaction between PNIPAM and silica. This work provides a clean and efficient way to prepare hollow microspheres.  相似文献   

6.
Heterostructured SnO2/CuO nanofibers with a hollow morphology were successfully fabricated by a one-step electrospinning method. The electrospun nanofibers were transformed into hollow nanostructures in the presence of camphene after a calcination process, and the obtained samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflection spectroscopy (DRS), photoluminescence spectra (PL), and photodegradation measurements. The scanning electron microscopy (SEM) images displayed a rough and hollow structure for the obtained nanofibers. X-ray photoelectron spectroscopy (XPS) and energy-dispersive X-ray spectroscopy (EDX) identified the molecular composition and chemical interactions of the nanofibers. Photoluminescent (PL) measurements indicated that a recombination of the photoinduced electrons and holes was further inhibited due to the hollow nanostructure. Furthermore, the photodegradation of methylene blue suggested that the heterostructured SnO2/CuO hollow nanofibers possessed higher charge separation and photodegradation abilities than those of the other samples under visible light irradiation. This work can be potentially applied to the fabrication of other inorganic oxide photocatalysts with enhanced photodegradation activity in the field of environmental remediation.  相似文献   

7.
We report a facile method that combined sol–gel reaction, reversible addition–fragmentation chain transfer (RAFT)/macromolecular design via interchange of the xanthates process and thiol‐ene click reaction to prepare monodisperse silica core‐poly(N‐vinylimidazole) (PVim) shell microspheres of 200 nm in average diameters. First, silica with C = C double bonds was prepared by the sol–gel reaction of 3‐(trimethoxysilyl)propyl methacrylates (MPS) with tetraethoxysilane in ethanol; SiO2@PVim were subsequently prepared by grafting PVim chain (Mn = 9800 g/mol, polydispersity index = 1.22) to MPS‐SiO2 via the thiol‐ene click chemisty. The obtained SiO2@PVim microspheres show higher catalytic activity toward the hydrolysis of p‐nitrophenyl acetate compared with the PVim homopolymers. The as‐prepared composites have been characterized by scanning electron microscopy, transmission electron microscopy, thermal gravimetric analysis and Fourier transform infrared spectrometry analysis. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
A CuO/Al2O3 catalyst was prepared using the impregnation method. The catalytic activity of CuO/Al2O3 for the ozonation of acid red B (ARB) in aqueous solution was studied, the chemical oxygen demand (COD) removal rate was an indicator for catalytic activity evaluation. The effects of initial ARB concentration, solution pH, and different oxidative degradation systems on oxidative degradation of ARB solution were studied. The CuO/Al2O3 catalyst was characterized using X‐ray diffractometry (XRD), N2 adsorption desorption test, X‐ray photoelectron spectroscopy (XPS), and zero‐point charge (pHzpc). The results show that copper species on the carrier were in the form of CuO and highly dispersed on the carrier. CuO can increase the alkalinity of the Al2O3 surface, and the CuO/Al2O3 catalyst facilitates the decomposition of O3 into ·OH, which was beneficial for the catalytic O3 oxidation degradation reaction. With the increase of the initial concentration of simulated wastewater, the CuO/Al2O3 catalytic reaction still has a high COD removal rate. Alkaline solution was of benefit to catalyze the degradation of ARB solution. When the ARB solution pH = 8.93, the degradation reaction was carried out for 40 min, the COD removal rate reached 83.2%. The degradation reaction was dominated by the hydroxyl radical (·OH) reaction.  相似文献   

9.
Phase equilibria in a miscibility gap of the SiO2-TiO2 system were studied. A visual polythermal analysis and annealing of samples were performed in a Galakhov microfurnace. The microstructure and composition of the obtained samples were investigated by scanning electron microscopy and electron probe microanalysis. A critical analysis of the experimental data was made. Thermodynamically optimized based on the sub-regular solution model, a phase diagram of the SiO2-TiO2 system was constructed.  相似文献   

10.
We report here a novel strategy for fabrication of SiO2 hollow microspheres with urchin-like structure based on templates from directed assembly of block copolymer, poly(2-cinnamoyloxyethyl acrylate)-block-poly(acrylic acid-co-styrene) (PCEA-b-P(AA-co-Sty)). The structures of template from directed assembly of copolymers as well as that of as-obtained hollow SiO2 microspheres were observed by a combination technique of optical microscope, scanning electron microscope, and transmission electron microscopy. It is shown that the hollow microspheres consist of aligned SiO2 “spines” radially growing from the core which are induced a favorable growth by the structures of the template from directed assembly of PCEA-b-P(AA-co-Sty). The “spine” density of the hollow SiO2 sphere can be tuned by controlling the structure of the copolymer with different hydrolysis degree of poly(tert-butyl-acrylate) to PAA, and the ultimate size of the resultant SiO2 hollow sphere can be adjusted by solvent and temperature in the sol–gel process, etc.  相似文献   

11.
A novel microphase‐inversion method was proposed for the preparation of TiO2–SiO2/poly(methyl methacrylate) core–shell nanocomposite particles. The inorganic–polymer nanocomposites were first synthesized via a free‐radical copolymerization in a tetrahydrofuran solution, and the poor solvent was added slowly to induce the microphase separation of the nanocomposite and result in the formation of nanoparticles. The average particle sizes of the microspheres ranged from 70 to 1000 nm, depending on the reaction conditions. Transmission electron microscopy and scanning electron microscopy indicated a core–shell morphology for the obtained microspheres. Thermogravimetric analysis and X‐ray photoelectron spectroscopy measurements confirmed that the surface of the nanocomposite microspheres was polymer‐rich, and this was consistent with the core–shell morphology. The influence of the synthetic conditions, such as the inorganic composition and the content of the crosslinking monomer, on the particle properties was studied in detail. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3911–3920, 2006  相似文献   

12.
In this work, we report the development of novel amino-functionalized Fe3O4 hybrid microspheres adsorbent from a facial and one-step solvothermal route by using FeCl3·6H2O as a single iron source and 3-aminophenoxy-phthalonitrile as ource of amino groups. During solvothermal process, the nitrile groups of 3-aminophenoxy-phthalonitrile would bond with the Fe3O4 through the phthalocyanine cyclization reaction to form the amino-functionalized Fe3O4 magnetic nano-material, which was confirmed by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and thermo-gravimetric analyzer (TGA). From the scanning electron microscope (SEM) and transmission electron microscopy (TEM) observation, the resulting monodispersed amino-functionalized Fe3O4 hybrid microspheres with the diameters of 180–200 nm were synthesized via the self-assembly process. More importantly, as-prepared Fe3O4 nano-materials with abundant amino groups exhibited high separation efficiency when they were used to remove the Cu(II) from aqueous solutions. Furthermore, the adsorption isotherms of Fe3O4 nano-material for Cu(II) removal fitted the Langmuir isotherm model, in which the calculated maximum adsorption capacity could increase from 5.51 to 16.25 mg g–1 at room temperature. This work demonstrated that the amino-functionalized Fe3O4 magnetic nano-materials were promising as efficient adsorbents for the removal of heavy metal ions from wastewater in low concentration.  相似文献   

13.
报道一种非常简单的制备NiO和Ni(OH)2空心微球的无模板水热法, 即通过NiCl2与氨水在140 ℃水热反应12 h, 制备了Ni(OH)2纳米片自组装的空心微球, 经400 ℃热处理2 h得到了NiO空心微球. 采用X射线衍射仪、扫描电镜和透射电子显微镜对产物进行表征, 并在室温下测试了它的磁学性能, 结果表明, Ni(OH)2空心微球的直径约为3~4 μm, 它是由尺寸1.1~1.3 μm左右的六方相结构的Ni(OH)2纳米片组装而成; NiO空心微球是由立方相纳米片和多孔纳米片组装而成, 它具有弱的铁磁性, 其矫顽力为583 Oe, 剩余磁化强度为0.213 emu/g. 研究了氨在Ni(OH)2纳米片的形成与组装过程中的作用, 提出了可能的生长机理.  相似文献   

14.
TiO2–SiO2 composite nanoparticles were prepared by a sol–gel process. To obtain the assembly of TiO2–SiO2 composite nanoparticles, different molar ratios of Ti/Si were investigated. Polyurethane (PU)/(TiO2–SiO2) hybrid films were synthesized using the “grafting from” technique by incorporation of modified TiO2–SiO2 composite nanoparticles building blocks into PU matrix. Firstly, 3-aminopropyltriethysilane was employed to encapsulate TiO2–SiO2 composite nanoparticles’ surface. Secondly, the PU shell was tethered to the TiO2–SiO2 core surface via surface functionalized reaction. The particle size of TiO2–SiO2 composite sol was performed on dynamic light scattering, and the microstructure was characterized by X-ray diffraction and Fourier transform infrared. Thermogravimetric analysis and transmission electron microscopy (TEM) employed to study the hybrid films. The average particle size of the TiO2–SiO2 composite particles is about 38 nm when the molar ratio of Ti/Si reaches to1:1. The TEM image indicates that TiO2–SiO2 composite nanoparticles are well dispersed in the PU matrix.  相似文献   

15.
Hollow molecular imprinted polymer microspheres were prepared by distillation precipitation polymerization with (S)‐(+)‐ibuprofen (S‐IBF) as template molecule and acrylamide (AM) as functional monomer. Using the silicon dioxide (SiO2, 180 nm) modified by 3‐(trimethoxysilyl)propyl methacrylate (MPS) as the template microspheres, the molecular imprinted shells were coated on successfully (SiO2@MIPs). The thermosensitive SiO2@MIPs‐PNIPAM core‐shell microspheres were subsequently prepared by grafting the PNIPAM chains (Mn=1.21×104 g/mol, polydispersity index=1.30), which were prepared by reversible addition‐fragmentation chain transfer (RAFT) polymerization, on the surface of SiO2@MIPs microspheres via the thiol‐ene click chemistry. The grafting density of PNIPAM brushes on the SiO2@MIPs microspheres was about 0.18 chains/nm2. After HF etching, the hollow imprinted microspheres were finally obtained. For thermosensitivity analysis, the phase transition temperatures of multifunctional nanoparticles were measured by DSL at 25°C and 45°C respectively, and the sizes of the microspheres changed by about 35 nm. The modified microspheres presented excellent controlled release property to S‐IBF, moreover about half amount of the adsorptions passed into acetonitrile‐water solution through the specific holes of imprinted shell at 25°C under vibration.  相似文献   

16.
邓辉  蒋新 《无机化学学报》2011,27(1):119-124
利用吸附法原位制备CuO/SiO2、CuO-Ag/SiO2纳米复合物,研究了不同吸附质体系中预负载的纳米Ag粒子对CuO的影响。结果表明:Ag粒子对CuO的影响因吸附质的不同而不同。以Cu(Ac)2为吸附质,纳米Ag几乎没有影响;以NaOH为吸附质,纳米Ag使得CuO的晶粒粒径增大。这一结果与铜物种对Ag晶粒粒径的影响规律完全不同。通过比较不同吸附质的吸附行为,Cu(OH)2与硅胶表面的相互作用被认为是导致这一现象的原因。  相似文献   

17.
Citric acid was used as the cross-linker to prepare the sustainable wood starch nanocomposites (WSNC) from the renewable resources like starch and soft wood flour using water as the solvent. Nano SiO2 was employed to develop the physicochemical properties of the WSNC via a green path. In this process, starch was grafted with methylmethacrylate (MMA) and SiO2 was modified with N-cetyl-N,N,N-trimethyl ammonium bromide. Three different percentage of modified nano SiO2 (1–5 phr) were employed in the preparation of the composites and their properties were characterized by Fourier transform infrared spectroscopy. The morphological features of the composites were investigated through transmission electron microscopy and scanning electron microscopy study. Mechanical and dynamic mechanical properties like storage modulus, loss factors and tan δ value of the composites were thoroughly investigated. Thermal stability, water resistance and flammability of the composites were significantly improved after incorporation of modified SiO2. The maximum improvements in properties were achieved containing 3 phr modified SiO2 composites.  相似文献   

18.
CdS hollow microspheres have been successfully prepared by a photochemical preparation technology at room temperature, using polystyrene latex particles as templates, CdSO4 as cadmium source and Na2S2O3 as both sulphur source and photo-initiator. The process involved the deposition of CdS nanoparticles on the surface of polystyrene latex particles under the irradiation of an 8 W UV lamp and the subsequent removal of the latex particles by dispersing in dichloromethane. Photochemical reactions at the sphere/solution interface should be responsible for the formation of hollow spheres. The as-prepared products were characterized by X-ray diffraction, transmission electron microscopy and scanning electron microscopy. Such hollow spheres could be used in photocatalysis and showed high photocatalytic activities in photodegradation of methyl blue (MB) in the presence of H2O2. The method is green, simple, universal and can be extended to prepare other sulphide and oxide hollow spheres.  相似文献   

19.
A series of 3DOM and non-3DOM metal oxide–silica composites were prepared and tested dynamically in a packed-bed reactor at room temperature to remove ethanethiol from a gas stream containing ethyl mercaptan in moist N2.The obtained sorbents were characterized using X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and nitrogen adsorption–desorption techniques. The experimental results showed that the adsorption ability of different kinds of metal oxide–silica composites with 3DOM structure decreased in the sequence: 3D-CuO/SiO2 > 3D-NiO/SiO2 > 3D-Co3O4/SiO2 > 3D-ZnO/SiO2. The best ratio of CuO to SiO2 of 3DOM copper–silicon oxide sorbents for ethanethiol removal was found to be 1:2. The 3DOM structure could improve the removal activity of sorbents remarkably because of the high porosity with ordered interconnected macropores as well as the large surface area and high dispersion of CuO. It was also found that a moist atmosphere greatly benefited the adsorption of ethanethiol at ambient condition.  相似文献   

20.
A novel and simple method for the synthesis of monodispersed microporous SiO2 microspheres with high specific surface area was developed by hydrolysis of tetraethoxysilane (TEOS) in a water-ethanol mixed solution and using dodecylamine (DDA) as hydrolysis catalyst and template. The as-prepared products were characterized with differential thermal analysis-thermogravimetry, scanning electron microscopy, high-resolution transmission electron microscopy, small angle X-ray diffraction and nitrogen adsorption. The effects of experimental conditions including hydrolysis temperatures, calcination temperature and concentrations of TEOS and DDA on the morphology and pore parameters of the as-prepared SiO2 microspheres were investigated and discussed. The results showed that hydrolysis temperature and concentrations of TEOS and DDA are important parameters for the control of size and morphology of particles. The specific surface area and specific pore volume of the as-prepared SiO2 microspheres increased with increasing DDA concentration and calcination temperature. DDA may act not only as a good hydrolysis catalyst but also as a template for the formation of monodispersed SiO2 microspheres with high specific surface area. This research may provide new insight into the synthesis of monodispersed microporous SiO2 microspheres.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号